Volume 9 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Chao Wan, Yu Liang, Liu Zhou, Jindou Huang, Jiapei Wang, Fengqiu Chen, Xiaoli Zhan, Dang-guo Cheng. Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis. Green Energy&Environment, 2024, 9(2): 333-343. doi: 10.1016/j.gee.2022.06.007
Citation: Chao Wan, Yu Liang, Liu Zhou, Jindou Huang, Jiapei Wang, Fengqiu Chen, Xiaoli Zhan, Dang-guo Cheng. Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis. Green Energy&Environment, 2024, 9(2): 333-343. doi: 10.1016/j.gee.2022.06.007

Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis

doi: 10.1016/j.gee.2022.06.007
  • The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy. Ammonia borane (AB) has regarded as a competitive candidate for chemical hydrogen storage. However, developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge. Herein, cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure, and function as hydrogen evolution photocatalysts. Impressively, the Co2P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min-1, outperforming most of the noble-metal-free catalysts reported to date. This remarkable performance is attributed to its desired nanosheets structure, featuring with high specific surface area, abundant exposed active sites, and short charge diffusion paths. Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond.

     

  • loading
  • [1]
    L. Schlapbach, A. Zuttel, Nature 414 (2001) 353-358.
    [2]
    T. He, P. Pachfule, H. Wu, Q. Xu, P. Chen, Nat. Rev. Mater. 1 (2016) 1-17.
    [3]
    H. Liu, C.Y. Cao, P. Li, Y. Yu, W.G. Song, J. Energy Chem. 23 (2014) 50-56.
    [4]
    S.T. Wismann, J.S. Engbaek, S.B. Vendelbo, F.B. Bendixen, W.L. Eriksen, K. Aasberg-Petersen, C. Frandsen, I. Chorkendorff, P.M. Mortensen, Science 364 (2019) 756-759.
    [5]
    C.L. Wang, Q. Wang, F.Y. Fu, D. Astruc, Acc. Chem. Res. 53 (2020) 2483-2493.
    [6]
    C. Wan, L. Zhou, S.M. Xu, B.Y. Jin, X. Ge, X. Qian, L.X. Xu, F.Q. Chen, X.L. Zhan, Y.R. Yang, D.G. Cheng, Chem. Eng. J. 429 (2022) 132388.
    [7]
    C.G. Lang, Y. Jia, X.D. Yao, Energy Storage Mater. 26 (2020) 290-312.
    [8]
    J.H. He, Z.W. Huang, W.Z. Chen, X.Z. Xiao, Z.D. Yao, Z.Q. Liang, L.J. Zhan, L. Lv, J.C. Qi, X.L. Fan, L.X. Chen, Chem. Eng. J. 431 (2022) 133697.
    [9]
    Y.Z. Ge, X.T. Qin, A. Li, Y.C. Deng, L.L. Lin, M.T. Zhang, Q.L. Yu, S.W. Li, M. Peng, Y. Xu, X.Y. Zhao, M.Q. Xu, W. Zhou, S.Y. Yao, D. Ma, J. Am. Chem. Soc.143 (2020) 628-633.
    [10]
    A. Rossin, M. Peruzzini, Chem. Rev. 116 (2016) 8848-8872.
    [11]
    C.L. Wang, D. Astruc, Chem. Soc. Rev. 50 (2021) 3437-3484.
    [12]
    A.Q. Zhang, J.H. Xia, Q.L. Yao, Z.H. Lu, Appl. Catal. B: Environ. 309 (2022) 121278.
    [13]
    G. Yang, S.Y. Guan, S. Mehdi, Y.P. Fan, B.Z. Liu, B.J. Li, Green Energy Environ. 6 (2021) 236-243.
    [14]
    C. Wan, L. Zhou, L. Sun, L.X. Xu, D.G. Cheng, F.Q. Chen, X.L. Zhan, Y.R. Yang, Chem. Eng. J. 396 (2020) 125229.
    [15]
    L.J. Zhang, J. Ye, Y. Tu, Q.Y. Wang, H.B. Pan, L.H. Wu, X.S. Zheng, J.F. Zhu, Nano Res. (2021). https://doi.org/10.1007/s12274-021-3941-7.
    [16]
    C. Wan, L. Sun, L.X. Xu, D.G. Cheng, F.Q. Chen, X.L. Zhan, Y.R. Yang, J. Mater. Chem. A 7 (2019) 8798-8804.
    [17]
    H.F. Cheng, T. Kamegawa, K. Mori, H. Yamashita, Angew. Chem. Int. Ed. 53 (2014) 2910-1914.
    [18]
    Q.M. Sun, N. Wang, Q. Xu, J.H. Yu, Adv. Mater. 32 (2020) 2001818.
    [19]
    P.Z. Li, A. Aijaz, Q. Xu, Angew. Chem. Int. Ed. 51 (2012) 6753-6756.
    [20]
    L. Cui, Y.H. Xu,L. Niu, W.R. Yang, J.Q. Liu, Nano Res. 10 (2017) 595-604.
    [21]
    M.A. Khalily, H. Eren, S. Akbayrak, H.H. Susapto, N. Biyikli, S. Ozkar, M.O. Guler, Angew. Chem. 128 (2016) 12445-12449.
    [22]
    F.Y. Fu, C.L. Wang, Q. Wang, A.M. Martinez-Villacorta, A. Escobar, H.B. Chong, X. Wang, S. Moya, L. Salman, E. Fouquet, J. Ruiz, D. Astruc, J. Am. Chem. Soc. 140 (2018) 10034-10042.
    [23]
    J.K. Zhang, W.Y. Chen, H.B. Ge, C.Q. Chen, W.J. Yan, Z. Gao, J. Gan, B.Y. Zhang, X.Z. Duan, Y. Qin, Appl. Catal. B Environ. 235 (2018) 256-263.
    [24]
    S. Rej, L. Mascaretti, E.Y. Santiago, O. Tomanec, S. Kment, Z. Wang, R. Zboril, P. Fornasiero, A.O. Govorov, A. Naldoni, ACS Catal. 10 (2020) 5261-5271.
    [25]
    J.K. Zhang, X.H. Zheng, W.L. Yu, X. Feng, Y. Qin, Appl. Catal. B: Environ. 306 (2022) 121116.
    [26]
    F.X. Tong, X.Z. Liang, Z.Y. Wang, Y.Y. Liu, P. Wang, H.F. Cheng, Y. Dai, Z. Zheng, B. Huang, ACS Catal. 11 (2021) 10814-10823.
    [27]
    H. Kahri, M. Sevim, O. Metin, Nano Res. 10 (2017) 1627-1640.
    [28]
    S. Rej, C.F. Hsia, T.Y. Chen, F.C. Lin, J.S. Huang, M.H. Huang, Angew. Chem. Int. Ed. 55 (2016) 7222-7226.
    [29]
    Y.Q. Gong, H. Zhong, W.H. Liu, B.B. Zhang, S.Q. Hu, R.H. Wang, ACS Appl. Mater. Interfaces 10 (2018) 776-786.
    [30]
    C.H. Han, P. Meng, E.R. Waclawik, C. Zhang, X.H. Li, H.Q. Yang, M. Antonietti, J.S. Xu, Angew. Chem. Int. Ed. 57 (2018) 14857-14861.
    [31]
    J. Manna, S. Akbayrak, S. Ozkar, Appl. Catal. B Environ. 208 (2017) 104-115.
    [32]
    L.B. Wang, H.L. Li, W.B. Zhang, X. Zhao, J.X. Qiu, A.W. Li, X.S. Zheng, Z.P. Hu, R. Si, J. Zeng, Angew. Chem. Int. Ed. 56 (2017) 4712-4718.
    [33]
    H.B. Zou, B. Jin, R.W. Wang, Y.B. Wu, H.Q. Yang, S.L. Qiu, J. Mater. Chem. A 6 (2018) 24166-24174.
    [34]
    W.D. Li, Y.X. Zhao, Y. Liu, M.Z. Sun, G.I.N. Waterhouse, B.L. Huang, K. Zhang, T.R. Zhang, S.Y. Lu, Angew. Chem. Int. Ed. 60 (2021) 3290-3298.
    [35]
    Y. Wang, J.L. Li, W.X. Shi, Z.M. Zhang, S. Guo, R. Si, M. Liu, H.C. Zhou, S. Yao, C.H. An, T.B. Lu, Adv. Energy Mater. 10 (2020) 2002138.
    [36]
    Y. Fang, J.L. Li, T. Togo, F.Y. Jin, Z.F. Xiao, L.J. Liu, H. Drake, X.Z. Lian, H.C. Zhou, Chem 4 (2018) 555-563.
    [37]
    J.L. Cai, J. Ding, D.H. Wei, X. Xie, B.J. Li, S.Y. Lu, J.M. Zhang, Y.S. Liu, Q. Cai, S.Q. Zang, Adv. Energy Mater. 11 (2021) 2100141.
    [38]
    R.F. Shen, Y.Y. Liu, H. Wen, T. Liu, Z.K. Peng, X.L. Wu, X.H. Ge, S. Mehdi, H.Q. Cao, E.J. Liang, J.C. Jiang, B.J. Li, Appl. Catal. B: Environ. 306 (2022) 121100.
    [39]
    J.J. Li, Q.Q. Guan, H. Wu, W. Liu, Y. Lin, Z.H. Sun, X.X. Ye, X.S. Zheng, H.B. Pan, J.F. Zhu, S. Chen, W.H. Zhang, S.Q. Wei, J.L. Lu, J. Am. Chem. Soc. 141 (2019) 14515-14519.
    [40]
    H. Wu, Y.J. Cheng, B.Y. Wang, Y. Wang, M. Wu, W.D. Li, B.Z. Liu, S.Y. Lu, J. Energy Chem. 57 (2021) 198-205.
    [41]
    J.A. Sullivan, R. Herron, A.D. Phillips, Appl. Catal. B Environ. 201 (2017) 182-188.
    [42]
    W.Z. Fu, C. Han, D.L. Li, W.Y. Chen, J. Jia, G. Qian, W.K. Yuan, X.Z. Duan, X.G. Zhou, J. Energy Chem. 41 (2020) 142-148.
    [43]
    K. Feng, J. Zhong, B.H. Zhao, H. Zhang, L. Xu, X.H. Sun, S.T. Lee, Angew. Chem. Int. Ed. 55 (2016) 11950-11954.
    [44]
    J.M. Yan, X.B. Zhang, S. Han, H. Shioyama, Q. Xu, Angew. Chem. Int. Ed. 47 (2008) 2287-2289.
    [45]
    J.L. Li, X.Y. Ren, H. Lv, Y.Y. Wang, Y.F. Li, B. Liu, J. Hazard. Mater. 391 (2020) 122199.
    [46]
    J.M. Yan, X.B. Zhang, T. Akita, M. Haruta, Q. Xu, J. Am. Chem. Soc. 132 (2010) 5326-5327.
    [47]
    H. Wu, M. Wu, B.Y. Wang, X. Yong, Y.S. Liu, B.J. Li, B.Z. Liu, S.Y. Lu, J. Energy Chem. 48 (2020) 43-53.
    [48]
    A. Serov, M. Paddilla, A.J. Roy, P. Atanassov, T. Sakamoto, K. Asazawa, H. Tanaka, Angew. Chem. Int. Ed. 53 (2014) 10336-10339.
    [49]
    A. Bulut, M. Yurderi, I.E. Ertas, M. Celebi, M. Kaya, M. Zahmakiran, Appl. Catal. B Environ. 180 (2016) 121-129.
    [50]
    Y.Q. Kang, B. Jiang, J.J. Yang, Z. Wan, J. Na, Q. Li, H.X. Li, J. Henzie, Y. Sakka, Y. Yamauchi, T. Asahi, ACS Nano 14 (2020) 17224-17232.
    [51]
    X. Zhang, Y.F. Zhao, X. D. Jia, Y.X. Zhao, L. Shang, Q. Wang, G. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Energy Mater. 8 (2018) 1702780.
    [52]
    P. Li, R. Chen, S.E. Zhao, W.Q. Li, Y.N. Lin, Y. Yu, Appl. Catal. B Environ. 298 (2021) 120523.
    [53]
    Y.T. Wang, G.Q. Shen, Y.X. Zhang, L. Pan, X.W. Zhang, J.J. Zou, Appl. Catal. B Environ. 260 (2020) 118183.
    [54]
    C.C. Hou, Q. Li, C.J. Wang, C.Y. Peng, Q.Q. Chen, H.F. Ye, W.F. Fu, C.M. Che, N. Lopez, Y. Chen, Energy Environ. Sci. 10 (2017) 1770-1776.
    [55]
    C.C. Hou, Q.Q. Chen, K. Li, C.J. Wang, C.Y. Peng, R. Shi, Y. Chen, J. Mater. Chem. A 7 (2019) 8277-8283.
    [56]
    Y.F. Chen, K. Feng, G.T. Yuan, Z.H. Kang, J. Zhong, Chem. Eng. J. 428 (2022) 131219.
    [57]
    C.Y. Peng, L. Kang, S. Cao, Y. Chen, Z.S. Lin, W.F. Fu, Angew. Chem. 127 (2015) 15951-15955.
    [58]
    C. Tang, L.S. Xie, K.Y. Wang, G. Du, A.M. Asiri, Y.L. Luo, X.P. Sun, J. Mater. Chem. A 4 (2016) 12407-12410.
    [59]
    Y.B. Lou, J.X. He, G.N. Liu, S.P. Qi, L. Cheng, J.X. Chen, Y.X. Zhao, J.J. Zhu, Chem. Commun. 54 (2018) 6188-6191.
    [60]
    Z.C. Fu, Y. Xu, S.L.F. Chan, W.W. Wang, F. Li, F. Liang, Y. Chen, Z.S. Lin, W.F. Fu, C.M. Che, Chem. Commun. 53 (2017) 705-708.
    [61]
    X.P. Qu, R. Jiang, Q. Li, F.A. Zeng, X. Zhen, Z.M. Xu, C.H. Chen, J. Peng, Green Chem. 21 (2019) 850-860.
    [62]
    J. Chen, B. Long, H.B. Hu, Z.Q. Zong, I. Lawan, F. Zhang, L.W. Wang, Z.H. Yuan, Int. J. Hydrogen Energy 47 (2022) 2976-2991.
    [63]
    H.B. Hu, B. Long, Y.F. Jiang, S.C. Sun, I. Lawan, W.M. Zhou, M.X. Zhang, L.W. Wang, Z.H. Yuan, Chem. Res. Chinese U. 36 (2020) 1209-1216.
    [64]
    L. Huang, Z.M. Hu, H.R. Jin, J.B. Wu, K.S. Liu, Z.H. Xu, J. Wan, H. Zhou, J.J. Duan, B. Hu, J. Zhou, Adv. Funct. Mater. 30 (2020) 1908486.
    [65]
    Z.L. Liu, S.J. Yang, B.X. Sun, X.H. Chang, J. Zheng, X.G. Li, Angew. Chem. Int. Ed. 57 (2018) 10187-10191.
    [66]
    C.C. Hou, L. Zou, Y. Wang, Q. Xu, Angew. Chem. Int. Ed. 59 (2020) 21360-21366.
    [67]
    Q.N. Liu, Z. Hu, Y.R. Liang, L. Li, C. Zou, H.L. Jin, S. Wang, H.M. Lu, Q.F. Gu, S.L. Chou, Y. Liu, S.X. Dou, Angew. Chem. Int. Ed. 59 (2020) 5159-5164.
    [68]
    H. Li, P. Wen, D.S. Itanze, M.W. Kim, S. Adhikari, C. Lu, L. Jiang, Y.J. Qiu, S.M. Geyer, Adv. Mater. 31 (2019) 1900813.
    [69]
    J.Q. Tian, N.Y. Cheng, Q. Liu, W. Xing, X.P. Sun, Angew. Chem. Int. Ed. 54 (2015) 5493-5497.
    [70]
    K. Wang, H.Y. Xie, Y.b. Li, G.R. Wang, Z.L. Jin, J. Phys. Chem. C 126 (2022) 6947-6959.
    [71]
    C.C. Cui, Y.Y. Liu, S. Mehdi, H. Wen, B.J. Zhou, J.P. Li, B.J. Li, Appl. Catal. B Environ. 265 (2020) 118612.
    [72]
    Q.L. Yao, Z.H. Lu, Y.W. Yang, Y.Z. Chen, X.S. Chen, H.L. Jiang, Nano Res. 11 (2018) 4412-4422.
    [73]
    K. Mori, K. Miyawaki, H. Yamashita, ACS Catal. 6 (2016) 3128-3135.
    [74]
    Y. Xu, H. Zhang, J. Song, D. Wang, X.J. Gu, Chem. Eng. J. 401 (2020) 126068.
    [75]
    H.L. Huang, Q. Li, R.Q. Wang, Y.Y. Yang, A. Muhetaer, F.Q. Huang, B. Han, D.S. Xu, Adv. Funct. Mater. 31 (2021) 2007591.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (262) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return