Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Abdul Malek, Xu Lu, Paul R. Shearing, Dan J.L. Brett, Guanjie He. Strategic comparison of membrane-assisted and membrane-less water electrolyzers and their potential application in direct seawater splitting (DSS). Green Energy&Environment, 2023, 8(4): 989-1005. doi: 10.1016/j.gee.2022.06.006
Citation: Abdul Malek, Xu Lu, Paul R. Shearing, Dan J.L. Brett, Guanjie He. Strategic comparison of membrane-assisted and membrane-less water electrolyzers and their potential application in direct seawater splitting (DSS). Green Energy&Environment, 2023, 8(4): 989-1005. doi: 10.1016/j.gee.2022.06.006

Strategic comparison of membrane-assisted and membrane-less water electrolyzers and their potential application in direct seawater splitting (DSS)

doi: 10.1016/j.gee.2022.06.006
  • Electrocatalytic splitting of water by means of renewable energy as the electricity supply is one of the most promising methods for storing green renewable energy as hydrogen. Although two-thirds of the earth's surface is covered with water, there is inadequacy of freshwater in most parts of the world. Hence, splitting seawater instead of freshwater could be a truly sustainable alternative. However, direct seawater splitting faces challenges because of the complex composition of seawater. The composition, and hence, the local chemistry of seawater may vary depending on its origin, and in most cases, tracking of the side reactions and standardizing and customizing the catalytic process will be an extra challenge. The corrosion of catalysts and competitive side reactions due to the presence of various inorganic and organic pollutants create challenges for developing stable electro-catalysts. Hence, seawater splitting generally involves a two-step process, i.e., purification of seawater using reverse osmosis and then subsequent fresh water splitting. However, this demands two separate chambers and larger space, and increases complexity of the reactor design. Recently, there have been efforts to directly split seawater without the reverse osmosis step. Herein, we represent the most recent innovative approaches to avoid the two-step process, and compare the potential application of membrane-assisted and membrane-less electrolyzers in direct seawater splitting (DSS). We particularly discuss the device engineering, and propose a novel electrolyzer design strategies for concentration gradient based membrane-less microfluidic electrolyzer.

     

  • loading
  • [1]
    J. Hussain, A. Khan and K. Zhou, The impact of natural resource depletion on energy use and CO2 emission in Belt & Road Initiative countries: a cross-country analysis, Energy, 199 (2020), 117409.
    [2]
    L. D. Claxton, The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions: 1. Principles and background, Mutation Research/Reviews in Mutation Research, 762 (2014), 76-107.
    [3]
    M. Hook and X. Tang, Depletion of fossil fuels and anthropogenic climate change-A review, Energy policy, 52 (2013), 797-809.
    [4]
    Wang, Jingyi, Jiajia Huang, Siyu Zhao, Ivan P. Parkin, Zhihong Tian, Feili Lai, Tianxi Liu, and Guanjie He. Mo/Fe bimetallic pyrophosphates derived from Prussian blue analogues for rapid electrocatalytic oxygen evolution. Green Energy & Environment (2022), https://doi.org/10.1016/j.gee.2022.02.014.
    [5]
    Jiang, Haishun, Kenan Zhang, Wenyao Li, Zhe Cui, Shu-Ang He, Siyu Zhao, Jun Li, Guanjie He, Paul R. Shearing, and Dan JL Brett. MoS2/NiS core-shell structures for improved electrocatalytic process of hydrogen evolution. Journal of Power Sources 472 (2020), 228497.
    [6]
    Zhao, Siyu, Jasper Berry-Gair, Wenyao Li, Guoqiang Guan, Manni Yang, Jianwei Li, Feili Lai et al. The role of phosphate group in doped cobalt molybdate: improved electrocatalytic hydrogen evolution performance. Advanced Science 7, (2020), 1903674.
    [7]
    Huang, Jiajia, Jingyi Wang, Ruikuan Xie, Zhihong Tian, Guoliang Chai, Yanwu Zhang, Feili Lai et al. A universal pH range and a highly efficient Mo 2 C-based electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A 8, (2020), 19879-19886.
    [8]
    P. Sadorsky, Wind energy for sustainable development: Driving factors and future outlook, Journal of Cleaner Production 289 (2021), 125779.
    [9]
    A. Malek, A. Ganta, G. Divyapriya, I. M. Nambi and T. Thomas, Hydrogen production from human and cow urine using in situ synthesized aluminium nanoparticles, International Journal of Hydrogen Energy 46 (2021), 27319-27329.
    [10]
    A. Malek, E. Prasad, S. Aryasomayajula and T. Thomas, Chimie douce hydrogen production from Hg contaminated water, with desirable throughput, and simultaneous Hg-removal, International Journal of Hydrogen Energy 42 (2017), 15724-15730.
    [11]
    I. Jain, Hydrogen the fuel for 21st century, International Journal of Hydrogen Energy 34 (2009), 7368-7378.
    [12]
    H. Song, M. Wu, Z. Tang, J. S. Tse, B. Yang and S. Lu, Angewandte Chemie International Edition 2021, 60, 7234-7244.
    [13]
    Y. Li, X. Wei, L. Chen and J. Shi, Single Atom Ruthenium-Doped CoP/CDs Nanosheets via Splicing of Carbon-Dots for Robust Hydrogen Production, Angewandte Chemie International Edition, 2021.
    [14]
    Y. Dang, T. Wu, H. Tan, J. Wang, C. Cui, P. Kerns, W. Zhao, L. Posada, L. Wen and S. L. Suib, Partially reduced Ru/RuO 2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution, Energy & Environmental Science 14 (2021), 5433-5443.
    [15]
    Y. Chen, S. Ji, W. Sun, Y. Lei, Q. Wang, A. Li, W. Chen, G. Zhou, Z. Zhang and Y. Wang, Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production, Angewandte Chemie 132 (2020), 1311-1317.
    [16]
    G. Li, Y. Wu, R. Yao, F. Zhao, Q. Zhao, J. Li, Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting, Green Energy Environ. 6 (2021) 496-505.
    [17]
    I. Dincer, Green methods for hydrogen production, International Journal of Hydrogen Energy 37 (2012), 1954-1971.
    [18]
    S. Jiao, X. Fu, S. Wang and Y. Zhao, Perfecting electrocatalysts via imperfections: towards the large-scale deployment of water electrolysis technology, Energy & Environmental Science 14 (2021), 1722-1770.
    [19]
    J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis and H. B. Gray, Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes, Energy & Environmental Science 4 (2011), 3573-3583.
    [20]
    J.T. Ren, Y. Yao, Z.Y. Yuan, Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: Recent advances Green Energy Environ 6 (2021), 620-643.
    [21]
    K. Zhu, X. Zhu and W. Yang, Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts, Angewandte Chemie International Edition 58 (2019), 1252-1265.
    [22]
    Z. Li, X. Zhang, Y. Kang, C. C. Yu, Y. Wen, M. Hu, D. Meng, W. Song and Y. Yang, Interface Engineering of Co-LDH@ MOF Heterojunction in Highly Stable and Efficient Oxygen Evolution Reaction, Advanced Science 8 (2021), 2002631.
    [23]
    A. Curcio, J. Wang, Z. Wang, Z. Zhang, A. Belotti, S. Pepe, M. B. Effat, Z. Shao, J. Lim and F. Ciucci, Unlocking the Potential of Mechanochemical Coupling: Boosting the Oxygen Evolution Reaction by Mating Proton Acceptors with Electron Donors, Advanced Functional Materials 31 (2021), 2008077.
    [24]
    Q. Dong, T. Su, W. Ge, Y. Ren, Y. Liu, W. Wang, Q. Wang and X. Dong, Atomic Doping and Anion Reconstructed CoF2 Electrocatalyst for Oxygen Evolution Reaction, Advanced Materials Interfaces 7 (2020), 1901939.
    [25]
    M. Li, H. Liu and L. Feng, Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: A mini review, Electrochemistry Communications, (2020), 106901.
    [26]
    M. Schalenbach, G. Tjarks, M. Carmo, W. Lueke, M. Mueller and D. Stolten, Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis, Journal of The Electrochemical Society 163 (2016), F3197.
    [27]
    K. Zeng and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Progress in energy and combustion science 36 (2010), 307-326.
    [28]
    M. Schalenbach, A. R. Zeradjanin, O. Kasian, S. Cherevko and K. J. Mayrhofer, A perspective on low-temperature water electrolysis-challenges in alkaline and acidic technology, Int. J. Electrochem. Sci, 13 (2018), 1173-1226.
    [29]
    M. Rashid, M. K. Al Mesfer, H. Naseem and M. Danish, Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis, International Journal of Engineering and Advanced Technology 4 (2015), 80-93.
    [30]
    P. Fortin, T. Khoza, X. Cao, S. Y. Martinsen, A. O. Barnett and S. Holdcroft, High-performance alkaline water electrolysis using Aemion™ anion exchange membranes, Journal of Power Sources 451 (2020), 227814.
    [31]
    A. Malek, G. R. Rao and T. Thomas, Hydrogen production from human and cow urine using in situ synthesized aluminium nanoparticles, International Journal of Hydrogen Energy 46 (2021), 26677-26692.
    [32]
    C. J. Vorosmarty, P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan and C. R. Liermann, Global threats to human water security and river biodiversity, nature 467 (2010), 555-561.
    [33]
    Lindquist, G.A., Xu, Q., Oener, S.Z. and Boettcher, S.W., Membrane electrolyzers for impure-water splitting. Joule, 4(12), (2020), 2549-2561.
    [34]
    M. S. Adaramola, M. Agelin-Chaab and S. S. Paul, Assessment of wind power generation along the coast of Ghana, Energy Conversion and Management 77 (2014), 61-69.
    [35]
    T. Kim, S. Lee and H. Park, The potential of PEM fuel cell for a new drinking water source, Renewable and Sustainable Energy Reviews 15 (2011), 3676-3689.
    [36]
    K. D. Hristovski, B. Dhanasekaran, J. E. Tibaquira, J. D. Posner and P. K. Westerhoff, Producing drinking water from hydrogen fuel cells, Journal of Water Supply: Research and Technology-AQUA 58 (2009), 327-335.
    [37]
    Q. Wang, C. S. Cha, J. Lu and L. Zhuang, Ionic conductivity of pure water in charged porous matrix, ChemPhysChem 13 (2012), 514-519.
    [38]
    X. Niu, Q. Tang, B. He and P. Yang, Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting, Electrochimica Acta 208 (2016), 180-187.
    [39]
    J. Zheng, ] Pt-free NiCo electrocatalysts for oxygen evolution by seawater splitting, Electrochimica Acta 247 (2017), 381-391.
    [40]
    A. K. Engstfeld, T. Maagaard, S. Horch, I. Chorkendorff, I. E. Stephens, Polycrystalline and single-crystal Cu electrodes: influence of experimental conditions on the electrochemical properties in alkaline media. Chem.-Eur. J, 24(2018), 17743-17755.
    [41]
    A. R. Kucernak and V. N. N. Sundaram, Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium, Journal of Materials Chemistry A 2 (2014), 17435-17445.
    [42]
    J. Zheng, Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts, Applied Surface Science 413 (2017), 360-365.
    [43]
    M. E. Q. Pilson, An Introduction to the Chemistry of the Sea, Cambridge University Press, 2nd edn 2013.
    [44]
    J. Bennett, Electrodes for generation of hydrogen and oxygen from seawater, International Journal of Hydrogen Energy 5 (1980), 401-408.
    [45]
    S. Gupta, M. Forster, A. Yadav, A. J. Cowan, N. Patel and M. Patel, Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions, ACS Applied Energy Materials 3 (2020), 7619-7628.
    [46]
    J. B. Gerken, J. G. McAlpin, J. Y. Chen, M. L. Rigsby, W. H. Casey, R. D. Britt and S. S. Stahl, Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: the thermodynamic basis for catalyst structure, stability, and activity, Journal of the American Chemical Society 133 (2011), 14431-14442.
    [47]
    F. Cheng, X. Feng, X. Chen, W. Lin, J. Rong and W. Yang, Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH, Electrochimica Acta 251 (2017), 336-343.
    [48]
    Y. Wu, M. Chen, Y. Han, H. Luo, X. Su, M. T. Zhang, X. Lin, J. Sun, L. Wang and L. Deng, Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution, Angewandte Chemie International Edition 54 (2015), 4870-4875.
    [49]
    Y. Surendranath, M. W. Kanan and D. G. Nocera, Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH, Journal of the American Chemical Society 132 (2010), 16501-16509.
    [50]
    C. I. Torres, H.-S. Lee and B. E. Rittmann, Carbonate Species as OH- Carriers for Decreasing the pH Gradient between Cathode and Anode in Biological Fuel Cells, Environmental science & technology 42 (2008), 8773-8777.
    [51]
    J. N. Hausmann, R. Schlogl and P. W. Menezes, M. Driess, Is direct seawater splitting economically meaningful?, Energy & Environmental Science 14 (2021), 3679-3685.
    [52]
    G. Liu, Y. Xu, T. Yang and L. Jiang, Recent advances in electrocatalysts for seawater splitting, Nano Materials Science 2020.
    [53]
    S. r. Dresp, F. Dionigi, M. Klingenhof and P. Strasser, Direct electrolytic splitting of seawater: opportunities and challenges, ACS Energy Letters 2019, 4, 933-942.
    [54]
    W. Tong, M. Forster, F. Dionigi, S. Dresp, R. S. Erami, P. Strasser, A. J. Cowan and P. Farras, Electrolysis of low-grade and saline surface water, Nature Energy 5 (2020), 367-377.
    [55]
    S. S. Veroneau and D. G. Nocera, Continuous electrochemical water splitting from natural water sources via forward osmosis, Proceedings of the National Academy of Sciences, 118 (2021).
    [56]
    B. E. Logan, L. Shi and R. Rossi, Enabling the use of seawater for hydrogen gas production in water electrolyzers, Joule 5 (2021), 760-762.
    [57]
    Rossi, Ruggero, Derek M. Hall, Le Shi, Nicholas R. Cross, Christopher A. Gorski, Michael A. Hickner, and Bruce E. Logan. Using a vapor-fed anode and saline catholyte to manage ion transport in a proton exchange membrane electrolyzer. Energy & Environmental Science 14, (2021), 6041-6049.
    [58]
    Dresp, Soren, Fabio Dionigi, Stefan Loos, Jorge Ferreira de Araujo, Camillo Spori, Manuel Gliech, Holger Dau, and Peter Strasser. "Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level." Advanced Energy Materials 8, (2018), 1800338.
    [59]
    Ayers, Katherine E., Everett B. Anderson, Christopher B. Capuano, Michael Niedzwiecki, Michael A. Hickner, Chao-Yang Wang, Yongjun Leng, and Wei Zhao. Characterization of anion exchange membrane technology for low cost electrolysis. ECS Transactions 45, (2013), 121.
    [60]
    Vincent, Immanuel, and Dmitri Bessarabov. Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews 81 (2018), 1690-1704.
    [61]
    Unlu, Murat, Junfeng Zhou, and Paul A. Kohl. Hybrid anion and proton exchange membrane fuel cells. The Journal of Physical Chemistry C 113, (2009), 11416-11423.
    [62]
    D. V. Esposito, Membrane-less electrolyzers for low-cost hydrogen production in a renewable energy future, Joule 1 (2017), 651-658.
    [63]
    S. Dresp, F. Dionigi, S. Loos, J. Ferreira de Araujo, C. Spori, M. Gliech, H. Dau and P. Strasser, Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level, Advanced Energy Materials 8 (2018), 1800338.
    [64]
    L. Bigiani, D. Barreca, A. Gasparotto, T. Andreu, J. Verbeeck, C. Sada, E. Modin, O. I. Lebedev, J. R. Morante and C. Maccato, Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process, Applied Catalysis B: Environmental 284 (2021), 119684.
    [65]
    X. H. Wang, Y. Ling, B. Wu, B. L. Li, X. L. Li, J. L. Lei, N. B. Li and H. Q. Luo, Doping modification, defects construction, and surface engineering: Design of cost-effective high-performance electrocatalysts and their application in alkaline seawater splitting, Nano Energy 87 (2021), 106160.
    [66]
    J. Yu, B.-Q. Li, C.-X. Zhao and Q. Zhang, Seawater electrolyte-based metal-air batteries: from strategies to applications, Energy & Environmental Science 13 (2020), 3253-3268.
    [67]
    M. Gillespie, F. Van Der Merwe and R. Kriek, Performance evaluation of a membrane-less divergent electrode-flow-through (DEFT) alkaline electrolyzer based on optimisation of electrolytic flow and electrode gap, Journal of Power Sources 293 (2015), 228-235.
    [68]
    G. D. O'Neil, C. D. Christian, D. E. Brown and D. V. Esposito, Hydrogen production with a simple and scalable membrane-less electrolyzer, Journal of The Electrochemical Society 163 (2016), F3012.
    [69]
    G. Segre and A. Silberberg, Radial Particle Displacements in Poiseuille Flow of Suspensions, Nature 189 (1961), 209-210.
    [70]
    K. S. Elvira, X. C. i Solvas, R. C. Wootton and A. J. Demello, The past, present and potential for microfluidic reactor technology in chemical synthesis, Nature chemistry 5 (2013), 905-915.
    [71]
    S. M. H. Hashemi, M. A. Modestino and D. Psaltis, A membrane-less electrolyzer for hydrogen production across the pH scale, Energy & Environmental Science 8 (2015), 2003-2009.
    [72]
    A. Martinez-Lazaro, A. Rico-Zavala, F. Espinosa-Lagunes, J. Torres-Gonzalez, L. Alvarez-Contreras, M. Gurrola, L. Arriaga, J. Ledesma-Garcia and E. Ortiz-Ortega, Microfluidic water splitting cell using 3D NiFe2O4 hollow spheres, Journal of Power Sources 412 (2019), 505-513.
    [73]
    Davis, Jonathan T., Ji Qi, Xinran Fan, Justin C. Bui, and Daniel V. Esposito. Floating membraneless PV-electrolyzer based on buoyancy-driven product separation. International Journal of Hydrogen Energy 43, (2018): 1224-1238.
    [74]
    Rarotra, Saptak, Tapas K. Mandal, and Dipankar Bandyopadhyay. Microfluidic electrolyzers for production and separation of hydrogen from sea water using naturally abundant solar energy. Energy Technology 5, (2017), 1208-1217.
    [75]
    Rarotra, Saptak, Shaik Shahid, Mahuya De, Tapas Kumar Mandal, and Dipankar Bandyopadhyay. Graphite/RGO coated paper μ-electrolyzers for production and separation of hydrogen and oxygen. Energy 228 (2021), 120490.
    [76]
    Moser, Massimo, Franz Trieb, Tobias Fichter, Jurgen Kern, and Denis Hess. A flexible techno-economic model for the assessment of desalination plants driven by renewable energies. Desalination and Water Treatment 55, (2015), 3091-3105.
    [77]
    M. A. Modestino, D. F. Rivas, S. M. H. Hashemi, J. G. Gardeniers, and D. Psaltis, The potential for microfluidics in electrochemical energy systems. Energy & environmental science 9(11) (2016), 3381-3391.
    [78]
    Lu, Xu, Dennis YC Leung, Huizhi Wang, M. Mercedes Maroto-Valer, and Jin Xuan. A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization. Renewable Energy 95 (2016), 277-285.
    [79]
    Lu, Xu, Dennis YC Leung, Huizhi Wang, and Jin Xuan. A high performance dual electrolyte microfluidic reactor for the utilization of CO2. Applied energy 194 (2017), 549-559.
    [80]
    Modestino, Miguel Antonio, Mikael Dumortier, SM Hosseini Hashemi, Sophia Haussener, Christophe Moser, and Demetri Psaltis. Vapor-fed microfluidic hydrogen generator. Lab on a Chip 15, (2015), 2287-2296.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (430) PDF downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return