Volume 9 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Rui Li, Qixuan Lin, Junli Ren, Xiaobao Yang, Yingxiong Wang, Lingzhao Kong. Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid. Green Energy&Environment, 2024, 9(2): 311-320. doi: 10.1016/j.gee.2022.06.003
Citation: Rui Li, Qixuan Lin, Junli Ren, Xiaobao Yang, Yingxiong Wang, Lingzhao Kong. Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid. Green Energy&Environment, 2024, 9(2): 311-320. doi: 10.1016/j.gee.2022.06.003

Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid

doi: 10.1016/j.gee.2022.06.003
  • The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at 433 K for 1 h in the γ-butyrolactone (GBL)-H2O system, as well as the concomitant formation of 83.0% formic acid. The 13C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.

     

  • loading
  • [1]
    R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sadaba, M. Lopez Granados, Energ. Environ. Sci. 4 (2016) 1144-1189.
    [2]
    W. Hui, Y. Zhou, Y. Dong, Z. Cao, F. He, M. Cai, D. Tao, Green Energy Environ. 4 (2019) 53-59.
    [3]
    G. Qiu, C. Huang, X. Sun, B. Chen, Green chem. 21 (2019) 3930-3939.
    [4]
    Y. Shao, X. Hu, Z. Zhang, K. Sun, G. Gao, Green Energy Environ. 4 (2019) 400-413.
    [5]
    F. Yue, C.M. Pedersen, X. Yan, Y. Liu, D. Xiang, C. Ning, Y. Wang, Y. Qiao, Green Energy Environ. 3 (2018) 163-171.
    [6]
    J.B. Binder, A.V. Cefali, J.J. Blank, R.T. Raines, Energ. Environ. Sci. 3 (2010) 765-771.
    [7]
    J. Cui, J. Tan, T. Deng, X. Cui, Y. Zhu, Y. Li, Green Chem. 18 (2016) 1619-1624.
    [8]
    L. Wang, H. Guo, Q. Xie, J. Wang, B. Hou, L. Jia, J. Cui, D. Li, Appl. Catal. A: Gen. 572 (2019) 51-60.
    [9]
    L. Zhang, G. Xi, Z. Chen, J. Dong, X. Wang, Chem. Eng. J. 307 (2017) 868-876.
    [10]
    D. Zhao, W. Chu, Y. Wang, X. Zhu, X. Li, S. Xie, A. Jie, W. Xin, S. Liu, L. Xu, J. Mater. Chem. A 6 (2018) 24614-24624.
    [11]
    J.X. Liu, N. He, C.Y. Liu, G.R. Wang, Q. Xin, H.C. Guo, Rsc Adv. 8 (2018) 9731-9740.
    [12]
    H. Kobayashi, H. Yokoyama, B. Feng, A. Fukuoka, Green Chem. 17 (2015) 2732-2735.
    [13]
    J.A.M. Mesa, F. Brandi, I. Shekova, M. Antonietti, M. Al-Naji, Green Chem. 22 (2020) 7398-7405.
    [14]
    D. Ding, P. Sun, Q. Jin, Z. Li, J. Wang, J. Catal. 135 (1992) 635-637.
    [15]
    Z. Yan, M. Ding, J. Zhuang, X. Liu, Z. Liu, J. Mol. Catal. A-Chem. 194 (2003) 153-167.
    [16]
    H. Najar, M.S. Zin, A. Ghorbel, React. Kinet. Mech. Cat. 100 (2010) 385-398.
    [17]
    M. Boveri, C. Marquez-Alvarez, MA. Laborde, E. Sastre, Catal. Today 114 (2006) 217-225.
    [18]
    R. Giudici, H.W. Kouwenhoven, R. Prins, Appl. Catal. A: Gen. 203 (2000) 101-110.
    [19]
    J.X. Liu, N. He, C.Y. Liu, G.R. Wang, Q. Xin, H.C. Guo, RSC Adv. 18 (2018) 9731-9740.
    [20]
    J. Li, H. Liu, T. An, Y. Yue, X. Bao, RSC Adv. 54 (2017) 33714-33725.
    [21]
    M. Bjrgen, S. Kolboe, Appl. Catal. A: Gen. 225 (2002) 285-290.
    [22]
    B. Wang, X. Yan, X. Zhang, H. Zhang, F. Li, Appl. Catal. B: Environ. 266 (2020) 118645.
    [23]
    X. Pu, N.W. Liu, L. Shi, Micropor. Mesopor. Mat. 201 (2015) 17-23.
    [24]
    S.K. Sing, Pure Appl. Chem. 57 (1985) 603-619.
    [25]
    S.M. Maier, A. Jentys, J.A. Lercher, J. Phys. Chem. C 115 (2011) 8005-8013.
    [26]
    F. Tian, Y. Wu, Q. Shen, X. Li, Y. Chen, C. Meng, Micropor. Mesopor. Mat. 173 (2013) 129-138.
    [27]
    X. Pu, N.W. Liu, L. Shi, Micropor. Mesopor. Mat. 201 (2015) 17-23.
    [28]
    R. Li, Q. Lin, Y. Wang, W. Yang, X. Liu, W. Li, X. Wang, C. Liu, J. Ren, Appl. Catal. B: Environ. 286 (2021) 119862.
    [29]
    W. Gac, M. Greluk, G. Slowik, M. Yannick, V. Laetitia, S. Dzwigaj, Appl. Catal. B: Environ. 237 (2018) 94-109.
    [30]
    C. Chen, Z. Hu, J. Ren, S. Zhang, Z. Wang, Z. Yuan, ChemCatChem 11 (2019) 868-877.
    [31]
    Y. Wang, X. Yang, H. Zheng, X. Li, Y. Zhu, Y. Li, Mol. Catal. 463 (2019) 130-139.
    [32]
    M. Niu, Y. Hou, S. Ren, W. Wu, K.N. Marsh, Green Chem. 17 (2014) 453-459.
    [33]
    H.A. Wells, R.H. Atalla, J. Mol. Struct. 224 (1990) 385-424.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (343) PDF downloads(32) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return