Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Wenhua Yu, Yanyan Wang, Aimin Wu, Aikui Li, Zhiwen Qiu, Xufeng Dong, Chuang Dong, Hao Huang. Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy. Green Energy&Environment, 2024, 9(1): 138-151. doi: 10.1016/j.gee.2022.06.001
Citation: Wenhua Yu, Yanyan Wang, Aimin Wu, Aikui Li, Zhiwen Qiu, Xufeng Dong, Chuang Dong, Hao Huang. Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy. Green Energy&Environment, 2024, 9(1): 138-151. doi: 10.1016/j.gee.2022.06.001

Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy

doi: 10.1016/j.gee.2022.06.001
  • Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials. A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO2 surface coating is proposed. Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy. LiYO2 nanocoating has the function of structural constraint and protection, that protecting the lattice oxygen exposed to the surface, thus avoiding irreversible oxidation. As an Li+ conductor, LiYO2 nanocoating can provide a fast Li+ transfer channel, which enables the sample to have excellent rate performance. The synergistic effect of Y doping and nano-LiYO2 coating integration suppresses the oxygen release from the surface, accelerates the diffusion of Li+ from electrolyte to electrode and decreases the interfacial side reactions, enabling the lithium ion batteries to obtain good electrochemical performance. The lithium-ion full cell employing the Y-1 sample (cathode) and commercial graphite (anode) exhibit an excellent specific energy density of 442.9 Wh kg-1 at a current density of 0.1C, with very stable safety performance, which can be used in a wide temperature range (60 to -15 °C) stable operation. This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density.

     

  • loading
  • [1]
    S.T. Myung, F. Maglia, K.J. Park, C.S. Yoon, P. Lamp, S.J. Kim, Y.K. Sun, Acs Energy. Lett. 2 (2017) 196-223.
    [2]
    J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135 (2013) 1167-1176.
    [3]
    B. Wang, T.F. Liu, A.M. Liu, G.J. Liu, L. Wang, T.T. Gao, D.L. Wang, X.S. Zhao, Adv. Energy. Mater. 6 (2016) 1600426.
    [4]
    M.R. Yang, T.H. Teng, S.H. Wu, J. Power Sources 159 (2006) 307-311.
    [5]
    S. Wu, H. Zheng, X. Wang, N. Zhang, W. Cheng, B. Fu, H. Chen, H. Liu, H. Duan, Chem. Eng. J. 430 (2022) 131999.
    [6]
    T. Ohzuku, Y. Makimura, Chem. Lett. 7 (2001) 642-643.
    [7]
    H.P. Yang, H.H. Wu, M.Y. Ge, L.J. Li, Y.F. Yuan, Q. Yao, J. Chen, L.F. Xia, J.M. Zheng, Z.Y. Chen, J. Duan, K. Kisslinger, X.C. Zeng, W.K. Lee, Q.B. Zhang, J. Lu, Adv. Funct. Mater. 29 (2019) 1808825.
    [8]
    A. Tl, C. Lw, L. Jian. Chem. Eng. J. 434 (2022) 134645.
    [9]
    H. Yu, S. Wang, Y. Hu, G. He, L.Q. Bao, I.P. Parkin, H. Jiang, Green Energy Environ. 7 (2022) 266-274.
    [10]
    C.H. Chen, J. Liu, M.E. Stoll, G. Henriksen, D.R. Vissers, K. Amine, J. Power Sources 128 (2004) 278-285.
    [11]
    J.C. Zheng, Z. Yang, Z.J. He, H. Tong, W.J. Yu, J.F. Zhang, Nano Energy 53 (2018) 613-621.
    [12]
    J. Lee, D.A. Kitchaev, D.H. Kwon, C.W. Lee, J.K. Papp, Y.S. Liu, Z.Y. Lun, R.J. Clement, T. Shi, B.D. Mccloskey, J.H. Guo, M. Balasubramanian, G. Ceder, Nature 556 (2018) 185.
    [13]
    L. Ku, Y. Cai, Y. Ma, H. Zheng, P. Liu, Z. Qiao, Q. Xie, L. Wang, D.L. Peng, Chem. Eng. J. 370 (2019) 499-507.
    [14]
    M. Saubanere, E. Mccalla, J.M. Tarascon, M.L. Doublet, Energy Environ. Sci. 9 (2016) 984-991.
    [15]
    D.H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 8 (2016) 692-697.
    [16]
    W. Zhang, Y.G. Sun, H.Q. Deng, J.M. Ma, Y. Zeng, Z.Q. Zhu, Z.S. Lv, H.R. Xia, X. Ge, S.K. Cao, Y. Xiao, S.B. Xi, Y.H. Du, A.M. Cao, X.D. Chen, Adv. Mater. 32 (2020) 2000496.
    [17]
    K. Luo, M.R. Roberts, R. Hao, N. Guerrini, D.M. Pickup, Y.S. Liu, K. Edstrom, J.H. Guo, A.V. Chadwick, L.C. Duda, P.G. Bruce, Nat. Chem. 8 (2016) 684-691.
    [18]
    J.M. Zheng, M. Gu, J. Xiao, P.J. Zuo, C.M. Wang, J.G. Zhang, Nano Lett. 13 (2013) 3824-3830.
    [19]
    J.S. Yang, P. Li, F.P. Zhong, X.M. Feng, W.H. Chen, X.P. Ai, H.X. Yang, D.G. Xia, Y.L. Cao, Adv. Energy. Mater. 10 (2020) 1904264.
    [20]
    S.Q. Zhao, K. Yan, J.Q. Zhang, B. Sun, G.X. Wang, Angew. Chem. Int. Ed. 60 (2021) 2208-2220.
    [21]
    Q.Q. Qiao, L. Qin, G.R. Li, Y.L. Wang, X.P. Gao, J. Mater. Chem. A 3 (2015) 17627-17634.
    [22]
    J.C. Zhang, H. Zhang, R. Gao, Z.Y. Li, Z.B. Hu, X.F. Liu, Phys. Chem. Chem. Phys. 18 (2016) 13322-13331.
    [23]
    D.F. Kong, J.T. Hu, Z.F. Chen, K.P. Song, C. Li, M.Y. Weng, M.F. Li, R. Wang, T.C. Liu, J.J. Liu, M.J. Zhang, Y.G. Xiao, F. Pan, Adv. Energy. Mater. 9 (2019) 1901756.
    [24]
    R. Yu, M.N. Banis, C. Wang, B. Wu, Y. Huang, S. Cao, J. Li, S. Jamil, X. Lin, F. Zhao, W. Lin, B. Chang, X. Yang, H. Huang, X. Wang, X. Sun, Energy Storage Mater. 37 (2021) 509-520.
    [25]
    H. Yu, Y. Gao, X.H. Liang, J. Electrochem. Soc. 166 (2019) A2021-A2027.
    [26]
    Y.Y. Liu, Z. Yang, J.L. Li, B.B. Niu, K. Yang, F.Y. Kang, J. Mater. Chem. A 6 (2018) 13883-13893.
    [27]
    X.F. Zhang, I. Belharouak, L. Li, Y. Lei, J.W. Elam, A.M. Nie, X.Q. Chen, R.S. Yassar, R.L. Axelbaum, Adv. Energy. Mater. 3 (2013) 1300269.
    [28]
    X. Ding, Y.X. Li, F. Chen, X.D. He, A. Yasmin, Q. Hu, Z.Y. Wen, C.H. Chen, J. Mater. Chem. A 7 (2019) 11513-11519.
    [29]
    K.J. Rosina, M. Jiang, D.L. Zeng, E. Salager, A.S. Best, C.P. Grey, J. Mater. Chem. 22 (2012) 20602-20610.
    [30]
    T.L. Zhao, L. Li, R.J. Chen, H.M. Wu, X.X. Zhang, S. Chen, M. Xie, F. Wu, J. Lu, K. Amine, Nano Energy 15 (2015) 164-176.
    [31]
    X.H. Zhang, R.Z. Yu, Y. Huang, X.Y. Wang, Y. Wang, B. Wu, Z.S. Liu, J.C. Chen, Acs Sustain. Chem. Eng. 6 (2018) 12969-12979.
    [32]
    F. Wu, X.X. Zhang, T.L. Zhao, L. Li, M. Xie, R.J. Chen, Acs Appl. Mater. Interfaces 7 (2015) 3773-3781.
    [33]
    X.H. Zhang, X. Xie, R.Z. Yu, J.R. Zhou, Y. Huang, S. Cao, Y. Wang, K. Tang, C. Wu, X.Y. Wang, Acs Appl. Energy Mater. 2 (2019) 3532-3541.
    [34]
    A.P. Miller, J. Am. Soc. Eng. 53 (1941) 687-688.
    [35]
    H.F. Zheng, C.Y. Zhang, Y.G. Zhang, L. Lin, P.F. Liu, L.S. Wang, Q.L. Wei, J. Lin, B.S. Sa, Q.S. Xie, D.L. Peng, Adv. Funct. Mater. 31 (2021) 2100783.
    [36]
    X. Li, Y. Qiao, S.H. Guo, Z.M. Xu, H. Zhu, X.Y. Zhang, Y. Yuan, P. He, M. Ishida, H.S. Zhou, Adv. Mater. 30 (2018) 1705197.
    [37]
    W. Zhang, L.F. Cai, S.K. Cao, L. Qiao, Y. Zeng, Z.Q. Zhu, Z.S. Lv, H.R. Xia, L.X. Zhong, H.W. Zhang, X. Ge, J.Q. Wei, S.B. Xi, Y.H. Du, S.Z. Li, X.D. Chen, Adv. Mater. 31 (2019) 1906156.
    [38]
    L.F. Peng, H.T. Ren, J.Z. Zhang, S.Q. Chen, C. Yu, X.F. Miao, Z.Q. Zhang, Z.Y. He, M. Yu, L. Zhang, S.J. Cheng, J. Xie, Energy Storage Mater. 43 (2021) 53-61.
    [39]
    H. Zhao, B. Qiu, H.C. Guo, K. Jia, Z.P. Liu, Y.G. Xia, Green Energy Environ. 2 (2017) 174-185.
    [40]
    Q.Y. Li, D. Zhou, L.J. Zhang, D. Ning, Z.H. Chen, Z.J. Xu, R. Gao, X.Z. Liu, D.H. Xie, G. Schumacher, X.F. Liu, Adv. Funct. Mater. 29 (2019) 1806706.
    [41]
    Q. Li, G.S. Li, C.C. Fu, D. Luo, J.M. Fan, L.P. Li, Acs Appl. Mater. Interfaces 6 (2014) 10330-10341.
    [42]
    S. Kim, M. Aykol, V.I. Hegde, Z. Lu, S. Kirklin, J.R. Croy, M.M. Thackeray, C. Wolverton, Energy Environ. Sci. 10 (2017) 2201-2211.
    [43]
    Y. Huang, S. Cao, X. Xie, C. Wu, S. Jamil, Q.L. Zhao, B.B. Chang, Y. Wang, X.Y. Wang, Acs Appl. Mater. Interfaces 12 (2020) 19483-19494.
    [44]
    R. Baddour-Hadjean, J.P. Pereira-Ramos, Chem. Rev. 110 (2010) 1278-1319.
    [45]
    J. Chen, G.Q. Zou, W.T. Deng, Z.D. Huang, X. Gao, C. Liu, S.Y. Yin, H.Q. Liu, X.L. Deng, Y. Tian, J.Y. Li, C.W. Wang, D. Wang, H.W. Wu, L. Yang, H.S. Hou, X.B. Ji, Adv. Funct. Mater. 30 (2020) 2004302.
    [46]
    D.M. Liu, X.J. Fan, Z.H. Li, T. Liu, M.H. Sun, C. Qian, M. Ling, Y.J. Liu, C.D. Liang, Nano Energy 58 (2019) 786-796.
    [47]
    Y.Liu, Z. Yang, J.Li, B.Niu, K.Yang, F.Kang, J. Mater. Chem. A 6 (2018) 13883-13893.
    [48]
    S.F. Kang, H.F. Qin, Y. Fang, X. Li, Y.G. Wang, Electrochim. Acta 144 (2014) 22-30.
    [49]
    P. Ge, S.J. Li, L.Q. Xu, K.Y. Zou, X. Gao, X.Y. Cao, G.Q. Zou, H.S. Hou, X.B. Ji, Adv. Energy. Mater. 9 (2019) 1803035.
    [50]
    M. Ben Yahia, J. Vergnet, M. Saubanere, M.L. Doublet, Nat. Mater. 18 (2019) 496-502.
    [51]
    P. Ge, S.J. Li, H.L. Shuai, W. Xu, Y. Tian, L. Yang, G.Q. Zou, H.S. Hou, X.B. Ji, Adv. Mater. 31 (2019) 1806092.
    [52]
    M.T. Si, D.D. Wang, R. Zhao, D. Pan, C. Zhang, C.Y. Yu, X. Lu, H.L. Zhao, Y. Bai, Adv. Sci. 7 (2020) 1902538.
    [53]
    X.Z. Jin, H. Huang, A.M. Wu, S. Gao, M.K. Lei, J.J. Zhao, X.X. Gao, G.Z. Cao, Acs Nano 12 (2018) 8037-8047.
    [54]
    C. Huang, Z.J. Wang, Z.Q. Fang, S.X. Zhao, L.j. Ci, J. Power Sources 499 (2021) 229967.
    [55]
    F.L. Wu, G.T. Kim, M. Kuenzel, H. Zhang, J. Asenbauer, D. Geiger, U. Kaiser, S. Passerini, Adv. Energy. Mater. 9 (2019) 1902445.
    [56]
    M.J. Wang, A.F. Shao, F.D. Yu, G. Sun, D.M. Gu, Z.B. Wang, ACS Sustain. Chem. Eng. 7 (2019) 12825-12837.
    [57]
    Y.Y. Liu, Z. Yang, J.J. Zhong, J.L. Li, R.R. Li, Y. Yu, F.Y. Kang, Acs Nano 13 (2019) 11891-11900.
    [58]
    J.M. Peng, Y. Li, Z.Q. Chen, G.M. Liang, S.J. Hu, T.F. Zhou, F.H. Zheng, Q.C. Pan, H.Q. Wang, Q.Y. Li, J.W. Liu, Z.P. Guo, ACS Nano, 15 (2021) 11607-11618.
    [59]
    M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin, M.T. Sougrati, M.L. Doublet, D. Foix, D. Gonbeau, W. Walker, A.S. Prakash, M. Ben Hassine, L. Dupont, J.M. Tarascon, Nat. Mater. 12 (2013) 827-835.
    [60]
    S.J. Hu, Y. Li, Y.H. Chen, J.M. Peng, T.F. Zhou, W.K. Pang, C. Didier, V.K. Peterson, H.Q. Wang, Q.Y Li, Z.P. Guo, Adv. Energy. Mater. 9 (2019) 1901795.
    [61]
    H. Zhao, W.T. Li, J.X. Li, H.Y. Xu, C. Zhang, J. Li, C. Han, Z. Li, M. Chu, X.P. Qiu, Nano Energy 92 (2022) 106760.
    [62]
    E.Y. Hu, X.Q. Yu, R.Q. Lin, X.X. Bi, J. Lu, S.M. Bak, K.W. Nam, H.L.L. Xin, C. Jaye, D.A. Fischer, K. Amine, X.Q. Yang, Nat. Energy 3 (2018) 690-698.
    [63]
    X. Cao, X. Li, Y. Qiao, M. Jia, F.L. Qiu, Y.B. He, P. He, H.S. Zhou, Acs Energy. Lett. 4 (2019) 2409-2417.
    [64]
    K.W. Nam, S.M. Bak, E.Y. Hu, X.Q. Yu, Y.N. Zhou, X.J. Wang, L.J. Wu, Y.M. Zhu, K.Y. Chung, X.Q. Yang, Adv. Funct. Mater. 23 (2013) 1047-1063.
    [65]
    F.H. Zheng, X. Ou, Q.C. Pan, X.H. Xiong, C.H. Yang, M.L. Liu, J. Power Sources 346 (2017) 31-39.
    [66]
    H. Huang, Z. Li, S. Gu, J. Bian, Y. Li, J. Chen, K. Liao, Q. Gan, Y. Wang, S. Wu, Z. Wang, W. Luo, R. Hao, Z. Wang, G. Wang, Z. Lu, Adv. Energy. Mater. 11 (2021) 2101864.
    [67]
    T. Lin, T.U. Schulli, Y.X. Hu, X.B. Zhu, Q. Gu, B. Luo, B. Cowie, L.Z. Wang, Adv. Funct. Mater. 30 (2020) 1909192.
    [68]
    Q.H. Li, Y. Wang, X.L. Wang, X.R. Sun, J.N. Zhang, X.Q. Yu, H. Li, Acs Appl. Mater. Interfaces 12 (2020) 2319-2326.
    [69]
    Y.R. Zhang, Y. Katayama, R. Tatara, L. Giordano, Y. Yu, D. Fraggedakis, J.G.W. Sun, F. Maglia, R. Jung, M.Z. Bazant, Y. Shao-Horn, Energy Environ. Sci. 13 (2020) 183-199.
    [70]
    B.H. Zhang, Y.Z. Jiang, M.X. Gao, T.Y. Ma, W.P. Sun, H.G. Pan, Nano Energy 80 (2021) 105504.
    [71]
    X.L. Su, J.Y. Liu, C.C. Zhang, T. Huang, Y.G. Wang, A.S. Yu, Rsc. Adv. 6 (2016) 107355-107363.
    [72]
    A. Varzi, D. Bresser, J. Von Zamory, F. Muller, S. Passerini, Adv. Energy. Mater. 4 (2014) 1400054.
    [73]
    C.T. Gao, L. Li, A.R.O. Raji, A. Kovalchuk, Z.W. Peng, H.L. Fei, Y.M. He, N.D. Kim, Q.F. Zhong, E.Q. Xie, J.M. Tour, Acs Appl. Mater. Interfaces 7 (2015) 26549-26556.
    [74]
    Z. Chen, G.T. Kim, D. Bresser, T. Diemant, J. Asenbauer, S. Jeong, M. Copley, R.J. Behm, J. Lin, Z.X. Shen, S. Passerini, Adv. Energy. Mater. 8 (2018) 1801573.
    [75]
    P.K. Nayak, T.R. Penki, B. Markovsky, D. Aurbach, Acs Energy. Lett. 2 (2017) 544-548.
    [76]
    B.K. Zou, Q. Hu, D.Q. Qu, R. Yu, Y.T. Zhou, Z.F. Tang, C.H. Chen, J. Mater. Chem. A 4 (2016) 4117-4124.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (241) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return