Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Weijie Kou, Yafang Zhang, Wenjia Wu, Zibiao Guo, Quanxian Hua, Jingtao Wang. Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery. Green Energy&Environment, 2024, 9(1): 71-80. doi: 10.1016/j.gee.2022.05.002
Citation: Weijie Kou, Yafang Zhang, Wenjia Wu, Zibiao Guo, Quanxian Hua, Jingtao Wang. Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery. Green Energy&Environment, 2024, 9(1): 71-80. doi: 10.1016/j.gee.2022.05.002

Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery

doi: 10.1016/j.gee.2022.05.002
  • Solid polymer electrolyte (SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility; however, the unfavourable Li+ deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer‒thin SPE layer‒cathode integration (MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore, the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+ deposition and excellent cycling stability. High capacity (142.8 mAh g-1), stable operation of 140 cycles (capacity decay per cycle, 0.065%), and low polarization potential (0.5 C) are obtained in this Li|MXene-PEO-LFP cell, which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.

     

  • loading
  • [1]
    M. Armand, J. M. Tarascon, Nature 451 (2008) 652-657.
    [2]
    C. Ma, X. Zhang, C. Liu, Y. Zhang, Y. Wang, L. Liu, Z. Zhao, B. Wu, D. Mu, Green Energy Environ. (2022) 4-13. https://doi.org/10.1016/j.gee.2021.12.006.
    [3]
    S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Chem 5 (2019) 753-785.
    [4]
    F. Xu, S. Deng, Q. Guo, D. Zhou, X. Yao, Small Methods 5 (2021) 2100262.
    [5]
    D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Chem 5 (2019) 2326-2352.
    [6]
    L. Xu, J. Li, H. Shuai, Z. Luo, B. Wang, S. Fang, G. Zou, H. Hou, H. Peng, X. Ji, J. Energy Chem. 67 (2022) 524-548.
    [7]
    W. Kou, R. Lv, S. Zuo, Z. Yang, J. Huang, W. Wu, J. Wang, J. Membr. Sci. 618 (2021) 118702.
    [8]
    R. Fang, H. Xu, B. Xu, X. Li, Y. Li, J.B. Goodenough, Adv. Funct. Mater. 31 (2021) 2001812.
    [9]
    J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie, Y. Huang, Energy Environ. Sci. 14 (2021) 12-36.
    [10]
    X. Yang, K.R. Adair, X. Gao, X. Sun, Energy Environ. Sci. 14 (2021) 643-671.
    [11]
    S. Guo, W. Kou, W. Wu, R. Lv, Z. Yang, J. Wang, Chem. Eng. J. 427 (2022) 131948.
    [12]
    D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Matter 3 (2020) 57-94.
    [13]
    X. Wu, K. Pan, M. Jia, Y. Ren, H. He, L. Zhang, S. Zhang, Green Energy Environ. 4 (2019) 360-374.
    [14]
    J. Yin, X. Xu, S. Jiang, H. Wu, L. Wei, Y. Li, J. He, K. Xi, Y. Gao, Chem. Eng. J. 431 (2022) 133352.
    [15]
    Z. Yang, Z. Sun, C. Liu, Y. Li, G. Zhou, S. Zuo, J. Wang, W. Wu, J. Power Sources 484 (2021) 229287.
    [16]
    W. Tang, S. Tang, X. Guan, X. Zhang, Q. Xiang, J. Luo, Adv. Funct. Mater. 29 (2019) 1900648.
    [17]
    Y. Li, Z. Sun, D. Liu, S. Lu, F. Li, G. Gao, M. Zhu, M. Li, Y. Zhang, H. Bu, Z. Jia, S. Ding, Energy Environ. Mater. 4 (2021) 434-443.
    [18]
    K. Zhang, W. Liu, Y. Gao, X. Wang, Z. Chen, R. Ning, W. Yu, R. Li, L. Li, X. Li, K. Yuan, L. Ma, N. Li, C. Shen, W. Huang, K. Xie, K.P. Loh, Adv. Mater. 33 (2021) 2006323.
    [19]
    H. Huo, X. Li, Y. Chen, J. Liang, S. Deng, X. Gao, K. Doyle-Davis, R. Li, X. Guo, Y. Shen, C.W. Nan, X. Sun, Energy Storage Mater. 29 (2020) 361-366.
    [20]
    J. Qin, H. Shi, K. Huang, P. Lu, P. Wen, F. Xing, B. Yang, M. Ye, Y. Yu, Z.S. Wu, Nat. Commun. 12 (2021) 5786.
    [21]
    H. Wan, S. Liu, T. Deng, J. Xu, J. Zhang, X. He, X. Ji, X. Yao, C. Wang, ACS Energy Lett. 6 (2021) 862-868.
    [22]
    J. Zhu, X. Li, C. Wu, J. Gao, H. Xu, Y. Li, X. Guo, H. Li, W. Zhou, Angew. Chem. Int. Ed. 60 (2021) 3781-3790.
    [23]
    S. Liu, Y. Zhao, X. Li, J. Yu, J. Yan, B. Ding, Adv. Mater. 33 (2021) 2008084.
    [24]
    Z. Li, L. Wu, S. Dong, T. Xu, S. Li, Y. An, J. Jiang, X. Zhang, Adv. Funct. Mater. 31 (2021) 2006495.
    [25]
    M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23 (2011) 4248-4253.
    [26]
    C. Wei, Y. Tao, Y. An, Y. Tian, Y. Zhang, J. Feng, Adv. Funct. Mater. 30 (2020) 2004613.
    [27]
    X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu, J. Luo, Angew. Chem. Int. Ed. 57 (2018) 15028-15033.
    [28]
    D. Yang, C. Zhao, R. Lian, L. Yang, Y. Wang, Y. Gao, X. Xiao, Y. Gogotsi, X. Wang, G. Chen, Y. Wei, Adv. Funct. Mater. 31 (2021) 2010987.
    [29]
    Y. Shi, B. Li, Q. Zhu, K. Shen, W. Tang, Q. Xiang, W. Chen, C. Liu, J. Luo, S. Yang, Adv. Energy Mater. 10 (2020) 1903534.
    [30]
    C. Wei, Y. Wang, Y. Zhang, L. Tan, Y. Qian, Y. Tao, S. Xiong, J. Feng, Nano Res. 14 (2021) 3576-3584.
    [31]
    J. Wang, Z. Yuan, X. Wu, Y. Li, J. Chen, Z. Jiang, Adv. Funct. Mater. 29 (2019) 1900819.
    [32]
    D. Qu, Y. Jian, L. Guo, C. Su, N. Tang, X. Zhang, W. Hu, Z. Wang, Z. Zhao, P. Zhong, P. Li, T. Du, H. Haick, W. Wu, Nano-Micro Lett. 13 (2021) 188.
    [33]
    X. Song, H. Wang, S. Jin, M. Lv, Y. Zhang, X. Kong, H. Xu, T. Ma, X. Luo, H. Tan, D. Hu, C. Deng, X. Chang, J. Xu, Nano Res. 13 (2020) 1659-1667.
    [34]
    D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang, C. Wang, L. Yin, Energy Environ. Sci. 12 (2019) 2422-2432.
    [35]
    X. Chen, W. He, L.X. Ding, S. Wang, H. Wang, Energy Environ. Sci. 12 (2019) 938-944.
    [36]
    C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena, J. Zheng, M.N. Garaga, B.H. Ko, Y. Mao, S. He, Y. Gao, P. Wang, M. Tyagi, F. Jiao, R. Briber, P. Albertus, C. Wang, S. Greenbaum, Y.Y. Hu, A. Isogai, M. Winter, K. Xu, Y. Qi, L. Hu, Nature 598 (2021) 590-596.
    [37]
    Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q.H. Yang, F. Kang, Y.B. He, Adv. Funct. Mater. 29 (2019) 1805301.
    [38]
    H. An, Q. Liu, J. An, S. Liang, X. Wang, Z. Xu, Y. Tong, H. Huo, N. Sun, Y. Wang, Y. Shi, J. Wang, Energy Storage Mater. 43 (2021) 358-364.
    [39]
    Z. Wang, Q. Guo, R. Jiang, S. Deng, J. Ma, P. Cui, X. Yao, Chem. Eng. J. 435 (2022) 135106.
    [40]
    S.K. Cho, K.S. Oh, J.C. Shin, J.E. Lee, K.M. Lee, J. Cho, W.B. Lee, S.K. Kwak, M. Lee, S.Y. Lee, Adv. Funct. Mater. (2021) 2107753.
    [41]
    Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, Adv. Mater. 33 (2021) 2100353.
    [42]
    T. Watanabe, Y. Inafune, M. Tanaka, Y. Mochizuki, F. Matsumoto, H. Kawakami, J. Power Sources 423 (2019) 255-262.
    [43]
    Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao, Y. Bai, F. Wu, S. Chen, X. Xu, J. Power Sources 301 (2016) 47-53.
    [44]
    N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao, Z. Niu, Angew. Chem. Int. Ed. 60 (2021) 2861-2865.
    [45]
    K. Yan, J. Wang, S. Zhao, D. Zhou, B. Sun, Y. Cui, G. Wang, Angew. Chem. Int. Ed. 58 (2019) 11364-11368.
    [46]
    M.S. Kim, J.H. Ryu, Deepika, Y.R. Lim, I.W. Nah, K.R. Lee, L.A. Archer, W.I. Cho, Nat. Energy 3 (2018) 889-898.
    [47]
    X. Chen, X.R. Chen, T.Z. Hou, B.Q. Li, X.B. Cheng, R. Zhang, Q. Zhang, Sci. Adv. 5 (2019) eaau7728.
    [48]
    D. Zhang, S. Wang, B. Li, Y. Gong, S. Yang, Adv. Mater. 31 (2019) 1901820.
    [49]
    Z. Cheng, M. Xie, Y. Mao, J. Ou, S. Zhang, Z. Zhao, J. Li, F. Fu, J. Wu, Y. Shen, D. Lu, H. Chen, Adv. Energy Mater. 10 (2020) 1904230.
    [50]
    M.D. Tikekar, S. Choudhury, Z. Tu, L.A. Archer, Nat. Energy 1 (2016) 16114.
    [51]
    Y. Cheng, X. Ke, Y. Chen, X. Huang, Z. Shi, Z. Guo, Nano Energy 63 (2019) 103854.
    [52]
    J. Meng, M. Lei, C. Lai, Q. Wu, Y. Liu, C. Li, Angew. Chem. Int. Ed. 60 (2021) 23256-23266.
    [53]
    Y. Xu, T. Li, L. Wang, Y. Kang, Adv. Mater. 31 (2019) 1901662.
    [54]
    K. Deng, D. Han, S. Ren, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A 7 (2019) 13113-13119.
    [55]
    Y. Hu, W. Chen, T. Lei, Y. Jiao, H. Wang, X. Wang, G. Rao, X. Wang, B. Chen, J. Xiong, Nano Energy 68 (2020) 104373.
    [56]
    Y. Lin, M. Wu, J. Sun, L. Zhang, Q. Jian, T. Zhao, Adv. Energy Mater. 11 (2021) 2101612.
    [57]
    D. Cai, X. Wu, J. Xiang, M. Li, H. Su, X. Qi, X. Wang, X. Xia, C. Gu, J. Tu, Chem. Eng. J. 424 (2021) 130522.
    [58]
    J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L.Q. Chen, J. Qin, Y. Cui, Nat. Nanotechnol. 14 (2019) 705-711.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (622) PDF downloads(32) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return