Volume 9 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
Guangfu Qian, Wei Chen, Jinli Chen, Li Yong Gan, Tianqi Yu, Miaojing Pan, Xiaoyan Zhuo, Shibin Yin. Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation. Green Energy&Environment, 2024, 9(4): 684-694. doi: 10.1016/j.gee.2022.04.006
Citation: Guangfu Qian, Wei Chen, Jinli Chen, Li Yong Gan, Tianqi Yu, Miaojing Pan, Xiaoyan Zhuo, Shibin Yin. Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation. Green Energy&Environment, 2024, 9(4): 684-694. doi: 10.1016/j.gee.2022.04.006

Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation

doi: 10.1016/j.gee.2022.04.006
  • Exploitation of oxygen evolution reaction (OER) and urea oxidation reaction (UOR) catalysts with high activity and stability at large current density is a major challenge for energy-saving H2 production in water electrolysis. Herein, we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe2O4 (FeNi/NiFe2O4@NC) for efficiently increasing the performance of water and urea oxidation. Due to the tensile strain effect on FeNi/NiFe2O4@NC, it provides a favorable modulation on the electronic properties of the active center, thus enabling amazing OER (η100 = 196 mV) and UOR (E10 = 1.32 V) intrinsic activity. Besides, the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density, showing high industrial practicability. This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.

     

  • loading
  • [1]
    J.F. Chang, G.Z. Wang, Z.Z. Yang, B.Y. Li, Q. Wang, R. Kuliiev, N. Orlovskaya, M. Gu, Y.G. Du, G.F. Wang, Y. Yang, Adv. Mater. 33 (2021) 2101425.
    [2]
    T.H. Wang, X.Z. Fu, S.Y. Wang, Green Energy Environ. (2021) https://doi.org/10.1016/j.gee.2021.1003.1005.
    [3]
    Q. Wang, Z. Zhang, C. Cai, M.Y. Wang, Z.L. Zhao, M.H. Li, X. Huang, S. Han, H. Zhou, Z.X. Feng, L. Li, J. Li, H. Xu, J.S. Francisco, M. Gu, J. Am. Chem. Soc. 143 (2021) 13605-13615.
    [4]
    J.J. Hou, J.T. Yuan, W.J. Zhang, Y.X. Wang, X.M. Zhang, Green Energy Environ. (2020) https://doi.org/10.1016/j.gee.2020.1010.1003.
    [5]
    Q.Y. Jin, H. Cui, C.X. Wang, Green Energy Environ. (2021) https://doi.org/10.1016/j.gee.2021.1010.1002.
    [6]
    C.W. Liang, P.C. Zou, A. Nairan, Y.Q. Zhang, J.X. Liu, K.W. Liu, S.Y. Hu, F.Y. Kang, H.J. Fan, C. Yang, Energy Environ. Sci. 13 (2020) 86-95.
    [7]
    H.S. Lu, X.B. He, F.X. Yin, G.R. Li, J. Electrochem. 26 (2020) 136-147.
    [8]
    W. Zhang, D.H. Li, L.Z. Zhang, X.L. She, D.J. Yang, J. Energy Chem. 39 (2019) 39-53.
    [9]
    P.C. Cai, J. Zhao, X.H. Zhang, T.Y. Zhang, G.M. Yin, S. Chen, C.L. Dong, Y.C. Huang, Y.Y. Sun, D.J. Yang, B.S. Xing, Appl. Catal., B 306 (2022) 121091.
    [10]
    L. Zhang, Y.T. Ma, J.J. Duan, Y.Q. Yao, J.J. Feng, A.J. Wang, J. Colloid Interface Sci. 611 (2022) 205-214.
    [11]
    J.J. Duan, R.L. Zhang, J.J. Feng, L. Zhang, Q.L. Zhang, A.J. Wang, J. Colloid Interface Sci. 581 (2021) 774-782.
    [12]
    J.J. Duan, Z. Han, R.L. Zhang, J.J. Feng, L. Zhang, Q.L. Zhang, A.J. Wang, J. Colloid Interface Sci. 588 (2021) 248-256.
    [13]
    N. Yu, W. Cao, M. Huttula, Y. Kayser, P. Hoenicke, B. Beckhoff, F.Y. Lai, R.H. Dong, H.X. Sun, B.Y. Geng, Appl. Catal., B 261 (2020) 118193.
    [14]
    J.W. Chen, H.X. Chen, T.W. Yu, R.C. Li, Y. Wang, Z.P. Shao, S.Q. Song, Electrochem. Energ. Rev. 4 (2021) 566-600.
    [15]
    X.N. Li, Z.X. Cheng, X.L. Wang, Electrochem. Energ. Rev. 4 (2021) 136-145.
    [16]
    A. Kumar, X.H. Liu, J. Lee, B. Debnath, A.R. Jadhav, X.D. Shao, V.Q. Bui, Y. Hwang, Y. Liu, M.G. Kim, H. Lee, Energy Environ. Sci. 14 (2021) 6494-6505.
    [17]
    C.Y. Zhang, B.W. Xin, T.T. Chen, H. Ying, Z.H. Li, J.C. Hao, Green Energy Environ. (2021) https://doi.org/10.1016/j.gee.2021.1001.1017.
    [18]
    L. Wang, Z.H. Zeng, W.P. Gao, T. Maxson, D. Raciti, M. Giroux, X.Q. Pan, C. Wang, G. Jeffrey, Science 363 (2019) 870-874.
    [19]
    Y.C. Yao, S.L. Hu, W.X. Chen, Z.Q. Huang, W.C. Wei, T. Yao, R.R. Liu, K.T. Zang, X.Q. Wang, G. Wu, W.J. Yuan, T.W. Yuan, B.Q. Zhu, W. Liu, Z.J. Li, D.S. He, Z.G. Xue, Y. Wang, X.S. Zheng, J.C. Dong, C.R. Chang, Y.X. Chen, X. Hong, J. Luo, S.Q. Wei, W.X. Li, P. Strasser, Y.E. Wu, Y.D. Li, Nat. Catal. 2 (2019) 304-313.
    [20]
    G.F. Qian, J.L. Chen, T.Q. Yu, L. Luo, S.B. Yin, Nano-Micro Lett. 13 (2021) 77.
    [21]
    G.P. Liu, B. Wang, L. Wang, W.X. Wei, Y. Quan, C.T. Wang, W.S. Zhu, H.M. Li, J.X. Xia, Green Energy Environ. (2020) https://doi.org/10.1016/j.gee.2020.1010.1007.
    [22]
    X.L. Tan, D.H. He, X.W. Zhang, J. Electrochem. 25 (2019) 601-607.
    [23]
    G.F. Qian, J.L. Chen, T.Q. Yu, J.C. Liu, L. Luo, S.B. Yin, Nano-Micro Lett. 14 (2021) 20.
    [24]
    Z. Liu, B. Tang, X.C. Gu, H. Liu, L.G. Feng, Chem. Eng. J. 395 (2020) 125170.
    [25]
    S. Niu, W.J. Jiang, T. Tang, L.P. Yuan, H. Luo, J.S. Hu, Adv. Funct. Mater. 29 (2019) 1902180.
    [26]
    L.P. Wang, Y.J. Zhu, Y.Z. Wen, S.Y. Li, C.Y. Cui, F.L. Ni, Y.X. Liu, H.P. Lin, Y.Y. Li, H.S. Peng, B. Zhang, Angew. Chem., Int. Ed. 60 (2021) 10577-10582.
    [27]
    S.K. Geng, Y. Zheng, S.Q. Li, H. Su, X. Zhao, J.S. Hu, H.B. Shu, M. Jaroniec, P. Chen, Q.H. Liu, S.H. Qiao, Nat. Energy 6 (2021) 904-912.
    [28]
    Q.L. Zhang, F.M.D. Kazim, S.X. Ma, K.G. Qu, M. Li, Y.G. Wang, H. Hu, W.W. Cai, Z.H. Yang, Appl. Catal., B 280 (2021) 119436.
    [29]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
    [30]
    J.P. Perdew, K. Burke, Phys. Rev. Lett. 77 (1996) 3865-3868.
    [31]
    L. Pisani, J.A. Chan, B. Montanari, N.M. Harrison, Phys. Rev. B 75 (2007) 064418.
    [32]
    G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15-50.
    [33]
    J.K. Norskov, J. Rossmeisl, A. Logadottir, J. Phys. Chem. B 108 (2004) 17886-17892.
    [34]
    M.W. Chase, NIST JANAF Thermochemical Tables, American Institute of Physics: New York 1998.
    [35]
    J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Noerskov, J. Electroanal. Chem. 607 (2007) 83-89.
    [36]
    Y.F. Li, A. Selloni, ACS Catal. 4 (2014) 1148-1153.
    [37]
    Z.H. Zeng, K.C. Chang, J. Kubal, N.M. Markovic, J. Greeley, Nat. Energy 2 (2017) 17070.
    [38]
    C.J. Humphreys, Acta Crystallogr., Sect. A: Found. Crystallogr. 69 (2012) 45-50.
    [39]
    L.G. Li, P.T. Wang, Q. Shao, X.Q. Huang, Chem. Soc. Rev. 49 (2020) 3072-3106.
    [40]
    J.D. Chen, F. Zheng, S.J. Zhang, A. Fisher, Y. Zhou, Z.Y. Wang, Y.Y. Li, B.B. Xu, J.T. Li, S.G. Sun, ACS Catal. 8 (2018) 11342-11351.
    [41]
    G.F. Qian, G.T. Yu, J.J. Lu, L. Luo, T. Wang, C.H. Zhang, R.Q. Ku, S.B. Yin, W. Chen, S.C. Mu, J. Mater. Chem. A 8 (2020) 14545-14554.
    [42]
    E. Boutin, L. Merakeb, B. Ma, B. Boudy, M. Wang, J. Bonin, E. Anxolabehere-Mallart, M. Robert, Chem. Soc. Rev. 49 (2020) 5772-5809.
    [43]
    X.R. Zhang, Y.B. Mollamahale, D.D. Lyu, L.Z. Liang, F. Yu, M. Qing, Y.H. Du, X.Y. Zhang, Z.Q. Tian, P.K. Shen, J. Catal. 372 (2019) 245-257.
    [44]
    M. Zhang, J. Guan, Y.C. Tu, S.M. Chen, Y. Wang, S.H. Wang, L. Yu, C. Ma, D.H. Deng, X.H. Bao, Energy Environ. Sci. 13 (2020) 119-126.
    [45]
    X.J. Zhao, P. Pachfule, S. Li, J.R.J. Simke, J. Schmidt, A. Thomas, Angew. Chem., Int. Ed. 130 (2018) 8921-8926.
    [46]
    J.L. Chen, G.F. Qian, H. Zhang, S.Q. Feng, Y.S. Mo, L. Luo, S.B. Yin, Adv. Funct. Mater. 32 (2021) 2107597.
    [47]
    K. Dong, F. Huo, S.J. Zhang, Green Energy Environ. 5 (2020) 251-258.
    [48]
    G. Liu, M.H. Wang, Y. Wu, N. Li, F. Zhao, Q. Zhao, J.P. Li, Appl. Catal., B 260 (2020) 118199.
    [49]
    L. Yu, L.B. Wu, B. McElhenny, S.W. Song, D. Luo, F.H. Zhang, Y. Yu, S. Chen, Z.F. Ren, Energy Environ. Sci. 13 (2020) 3439-3446.
    [50]
    C.Z. Wang, M.Z. Zhu, Z.Y. Cao, P. Zhu, Y.Q. Cao, X.Y. Xu, C.X. Xu, Z.Y. Yin, Appl. Catal., B 291 (2021) 120071.
    [51]
    K. Feng, D. Zhang, F.F. Liu, H. Li, J.B. Xu, Y.J. Xia, Y.Y. Li, H.P. Lin, S. Wang, M.W. Shao, Z.H. Kang, J. Zhong, Adv. Energy Mater. 10 (2020) 2000184.
    [52]
    Q. Hu, Z.Y. Wang, X.W. Huang, Y.J. Qin, H.P. Yang, X.Z. Ren, Q.L. Zhang, J.H. Liu, M.H. Shao, C.X. He, Appl. Catal., B 286 (2021) 119920.
    [53]
    T.Y. Kou, S.W. Wang, R.P. Shi, T. Zhang, S. Chiovoloni, J.Q. Lu, W. Chen, M.A. Worsley, B.C. Wood, S.E. Baker, E.B. Duoss, R. Wu, C. Zhu, Y. Li, Adv. Energy Mater. 10 (2020) 2002955.
    [54]
    L.M. Cao, Y.W. Hu, S.F. Tang, A. Iljin, J.W. Wang, Z.M. Zhang, T.B. Lu, Adv. Sci. 5 (2018) 1800949.
    [55]
    Q.J. Che, Q. Li, Y. Tan, X.H. Chen, X. Xu, Y.S. Chen, Appl. Catal., B 246 (2019) 337-348.
    [56]
    J. Jian, W. Chen, D.C. Zeng, L.M. Chang, R. Zhang, M.C. Jiang, G.T. Yu, X.R. Huang, H.M. Yuan, S.H. Feng, J. Mater. Chem. A 9 (2021) 7586-7593.
    [57]
    G.F. Qian, Y.S. Mo, C. Yu, H. Zhang, T.Q. Yu, L. Luo, S.B. Yin, Renewable Energy 162 (2020) 2190-2196.
    [58]
    H. Jiang, M.Z. Sun, S.L. Wu, B.L. Huang, C.S. Lee, W.J. Zhang, Adv. Funct. Mater. 31 (2021) 2104951.
    [59]
    K.L. Wang, W. Huang, Q.H. Cao, Y.J. Zhao, X.J. Sun, R. Ding, W.W. Lin, E.H. Liu, P. Gao, Chem. Eng. J. 427 (2022) 130865.
    [60]
    J.C. Liu, Y. Wang, Y.F. Liao, C.L. Wu, Y.G. Yan, H.J. Xie, Y.G. Chen, ACS Appl. Mater. Interfaces 13 (2021) 26948-26959.
    [61]
    L.S. Zhang, L.P. Wang, H.P. Lin, Y.X. Liu, J.Y. Ye, Y.Z. Wen, A. Chen, L. Wang, F.L. Ni, Z.Y. Zhou, S.G. Sun, Y.Y. Li, B. Zhang, H.S. Peng, Angew. Chem., Int. Ed. 58 (2019) 16820-16825.
    [62]
    G.Q. Liu, C. Huang, Z.H. Yang, J.H. Su, W.X. Zhang, Appl. Catal., A 614 (2021) 118049.
    [63]
    Z.H. Lv, Z.H. Li, X. Tan, Z.M. Li, R. Wang, M.J. Wen, X. Liu, G.X. Wang, G.W. Xie, L.H. Jiang, Appl. Surf. Sci. 552 (2021) 149514.
    [64]
    J.H. Yang, M.M. Chen, X.H. Xu, S.Y. Jiang, Y.T. Zhang, Y.H. Wang, Y. Li, J. Zhang, D. Yang, Appl. Surf. Sci. 560 (2021) 150009.
    [65]
    R.Q. Li, X.Y. Wan, B.L. Chen, R.Y. Cao, Q.H. Ji, J. Deng, K.G. Qu, X.B. Wang, Y.C. Zhu, Chem. Eng. J. 409 (2021) 128240.
    [66]
    Z.Y. Yu, C.C. Lang, M.R. Gao, Y. Chen, Q.Q. Fu, Y. Duan, S.H. Yu, Energy Environ. Sci. 11 (2018) 1890-1897.
    [67]
    Z.J. Ji, J. Liu, Y. Deng, S.T. Zhang, Z. Zhang, P.Y. Du, Y.L. Zhao, X.Q. Lu, J. Mater. Chem. A 8 (2020) 14680-14689.
    [68]
    W.X. Zhu, Z.H. Yue, W.T. Zhang, N. Hu, Z.T. Luo, M.R. Ren, Z.J. Xu, Z.Y. Wei, Y.R. Suo, J.L. Wang, J. Mater. Chem. A 6 (2018) 4346-4353.
    [69]
    N. Chen, Y.X. Du, G. Zhang, W.T. Lu, F.F. Cao, Nano Energy 81 (2021) 105605.
    [70]
    J.Y. Zhang, T. He, M.D. Wang, R.J. Qi, Y. Yan, Z.H. Dong, H.F. Liu, H.M. Wang, B.Y. Xia, Nano Energy 60 (2019) 894-902.
    [71]
    C. Liu, F. Dong, M.J. Wu, Y.X. Wang, N.N. Xu, X. Wang, J.L. Qiao, P.H. Shi, H.T. Huang, J. Power Sources 438 (2019) 226953.
    [72]
    Z.P. Zeng, G.T. Fu, H.B. Yang, Y.B. Yan, J. Chen, Z.Z. Yu, J.J. Gao, L.Y. Gan, B. Liu, P. Chen, ACS Mater. Lett. 1 (2019) 432-439.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (130) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return