Volume 8 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Yanlin Qin, Yunzhen Chen, Xuezhi Zeng, Yingchun Liu, Xuliang Lin, Wenli Zhang, Xueqing Qiu. MoNi4-NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction. Green Energy&Environment, 2023, 8(6): 1728-1736. doi: 10.1016/j.gee.2022.04.005
Citation: Yanlin Qin, Yunzhen Chen, Xuezhi Zeng, Yingchun Liu, Xuliang Lin, Wenli Zhang, Xueqing Qiu. MoNi4-NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction. Green Energy&Environment, 2023, 8(6): 1728-1736. doi: 10.1016/j.gee.2022.04.005

MoNi4-NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction

doi: 10.1016/j.gee.2022.04.005
  • Molybdenum nickel alloy has been proved to be an efficient noble-metal-free catalyst for hydrogen evolution reaction (HER) in alkaline medium, but its electrocatalytic activity and stability need to be further improved to meet industrial requirements. In this study, carboxymethylated enzymatic hydrolysis lignin (EHL) was used as a biomacromolecule frame to coordinate with transition metal ions and reduced by pyrolysis to obtain the MoNi4-NiO heterojunction (MoNi4-NiO/C). The oblate sphere structure of MoNi4-NiO/C exposed a large catalytic active surface to the electrolyte. As a result, the hydrogen evolution reaction of MoNi4-NiO/C displayed a low overpotentials of 41 mV to achieve 10 mA cm-2 and excellent stability of 100 h at 100 mA cm-2 in 1 mol L-1 KOH, which was superior to that of commercial Pt/C. Lignin assisted the formation of NiO to construct the MoNi4-NiO interface and MoNi4-NiO heterojunction structure, which reduced the energy barrier by forming a more favorable transition states and then promoted the formation of adsorbed hydrogen at the heterojunction interface through water dissociation in alkaline media, leading to the rapid reaction kinetics. This work provided an effective strategy for improving the electrocatalytic performance of noble-metal-free electrocatalysts encapsulated by lignin-derived carbon.

     

  • loading
  • [1]
    D.K. Sam, W. Wang, S. Gong. E.K. Sam, X. Lv, J. Wang, J. Liu, Int. J. Hydrogen Energy 46 (2021) 21525-21533.
    [2]
    S. Pacala, R. Socolow, Science 305 (2004) 968-972.
    [3]
    G. Zhao, K. Rui, S.X. Dou, W. Sun, Adv. Funct. Mater. 28 (2018) 1803291.
    [4]
    X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148-5180.
    [5]
    M.H. Islam, O.S. Burheim, B.G. Pollet, Ultrason. Sonochem. 51 (2019) 533-555.
    [6]
    N. Barilo, S.C. Weiner, C. James, Int. J. Hydrogen Energy 42 (2017) 7625-7632.
    [7]
    R. Ye, Y. Liu, Z. Peng, T. Wang, A.S. Jalilov, B.I. Yakobson, S. H. Wei, J.M. Tour, ACS Appl. Mater. Interfaces 9 (2017) 3785-3791.
    [8]
    I.E. Stephens, I. Chorkendorff, Angew. Chem. Int. Ed. 50 (2011) 1476-1477.
    [9]
    P. Wang, X. Zhang. J. Zhang, S. Wan; S. Guo, G. Lu, J. Yao, X. Huang. Nat. Commun. 8 (2017) 1-9.
    [10]
    J. Joyner, E.F. Oliveira, H. Yamaguchi, K. Kato, S. Vinod, D.S. Galvao, D. Salpekar, S. Roy, U. Martinez, C.S. Tiwary, ACS Appl. Mater. Interfaces 12 (2020) 12629-12638.
    [11]
    X. Yang, A. Y. Lu, Y. Zhu, M.N. Hedhili, S. Min, K. W. Huang, Y. Han, L. J. Li, Nano Energy 15 (2015) 634-641.
    [12]
    M. R. Gao, J. X. Liang, Y. R. Zheng, Y. F. Xu, J. Jiang, Q. Gao, J. Li, S. H. Yu, Nat. Commun. 6 (2015) 1-7.
    [13]
    J. Lai, B. Huang, Y. Chao, X. Chen, S. Guo, Adv. Mater. 31 (2019) 1805541.
    [14]
    Y. Chao, J. Zheng, J. Chen, Z. Wang, S. Jia, H. Zhang, Z. Zhu, Catal. Sci. Technol. 7 (2017) 2798-2804.
    [15]
    J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew. Chem. Int. Ed. 128 (2016) 6814-6819.
    [16]
    Z. Chen, X. Duan, W. Wei, S. Wang, B. J. Ni, J. Mater. Chem. A 7 (2019) 14971-15005.
    [17]
    L. Yang, W. Zhou, J. Jia, T. Xiong, K. Zhou, C. Feng, J. Zhou, Z. Tang, S. Chen, Carbon 122 (2017) 710-717.
    [18]
    Y. Chao, W. Zhang, X. Wu, N. Gong, Z. Bi, Y. Li, J. Zheng, Z. Zhu, Y. Tan, Chem. Eur J. 25 (2019) 189-194.
    [19]
    F. Lu, M. Zhou, Y. Zhou, X. Zeng, Small 13 (2017) 1701931.
    [20]
    Y.Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo, S. Niu, Z.H. Dai, L.J. Wan, J.S. Hu, Adv. Mater. 29 (2017) 1703311.
    [21]
    J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Nat. Commun. 8 (2017) 1-8.
    [22]
    R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Nat. Mater. 11 (2012) 550-557.
    [23]
    J.H. Wijten, R.L. Riemersma, J. Gauthier, L.D. Mandemaker, ChemSusChem 12 (2019) 3491.
    [24]
    Q. Xu, G. Qian, S. Yin, C. Yu, W. Chen, T. Yu, L. Luo; Y. Xia, P. Tsiakaras, ACS Sustain. Chem. Eng. 8 (2020) 7174-7181.
    [25]
    T. Zhang, M.Y. Wu, D.Y. Yan, J. Mao, H. Liu, W. B. Hu, X. W. Du, T. Ling, S. Z. Qiao, Nano Energy 43 (2018) 103-109.
    [26]
    S. Lu, M. Hummel, Z. Gu, Y. Gu, Z. Cen, L. Wei, Y. Zhou, C. Zhang, C. Yang, Int. J. Hydrogen Energy 44 (2019) 16144-16153.
    [27]
    J. T. Ren, Y. Yao, Z. Y. Yuan, Green Energy Environ. 6 (2021) 620-643.
    [28]
    S. Zhang, X. Zhang, Y. Rui, R. Wang, X. Li, Green Energy Environ. 6 (2021) 458-478.
    [29]
    G. Liu, Q. Wang, D. Yan, Y. Zhang, C. Wang, S. Liang, L. Jiang, H. He, Green Chem. 23 (2021) 1665-1677.
    [30]
    L. Li, J. Kong, H. Zhang, S. Liu, Q. Zeng, Y. Zhang, H. Ma, H. He, J. Long, X. Li, Appl. Catal. B Environ. 279 (2020) 119343.
    [31]
    Y. Qi, X. Xiao, Y. Mei, L. Xiong, L. Chen, X. Lin, Z. Lin, S. Sun, B. Han, D. Yang, Adv. Funct. Mater. (2022) 2111615.
    [32]
    Y. Zhang, H. He, Y. Liu, Y. Wang, F. Huo, M. Fan, H. Adidharma, X. Li, S. Zhang, Green Chem. 21 (2019) 9-35.
    [33]
    X. Wang, R. Su; H. Aslan, J. Kibsgaard, S. Wendt, L. Meng, M. Dong, Y. Huang, F. Besenbacher, Nano Energy 12 (2015) 9-18.
    [34]
    M.A. Dominguez-Crespo, A.M. Torres-Huerta, B. Brachetti-Sibaja, A. Flores-Vela, Int. J. Hydrogen Energy 36 (2011) 135-151.
    [35]
    Y. Ma, M. Chen, H. Geng, H. Dong, P. Wu, X. Li, G. Guan, T. Wang, Adv. Funct. Mater. 30 (2020) 2000561.
    [36]
    A. Gomez-Aviles, M. Penas-Garzon, J. Bedia, J. Rodriguez, C. Belver, Chem. Eng. J. 358 (2019) 1574-1582.
    [37]
    J.M. Ramos, O. Versiane, J. Felcman, C.a.T. Soto, Spectrochim. Acta 68 (2007) 1370-1378.
    [38]
    H.V. Tran, T.L. Tran, T.D. Le, T.D. Le, H.M. Nguyen, L.T. Dang, Mater. Res. Express 6 (2018) 025018.
    [39]
    R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Nat. Mater. 11 (2012) 550-557.
    [40]
    I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastian-Pascual, V. Climent, J.M. Feliu, M. Koper, Nat. Energy 2 (2017) 1-7.
    [41]
    H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao, Z. Tang, Nat. Commun. 6 (2015) 1-8.
    [42]
    H. Wang, W. Zhou, J. X. Liu, R. Si, G. Sun, M. Q. Zhong, H. Y. Su, H. B. Zhao, J. A. Rodriguez, S.J. Pennycook, J. Am. Chem. Soc. 135 (2013) 4149-4158.
    [43]
    G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558.
    [44]
    G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
    [45]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
    [46]
    J. Klimes, D.R. Bowler, A. Michaelides, Phys. Rev. B 83 (2011) 195131.
    [47]
    G. Henkelman, H. Jonsson, J. Chem. Phys. 113 (2000) 9978-9985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (241) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return