Volume 8 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Ran Xi, Yiwei Tang, Richard Lee Smith, Xiaoning Liu, Le Liu, Xinhua Qi. Selective hydrogenation of glucose to sorbitol with tannic acid-based porous carbon sphere supported Ni-Ru bimetallic catalysts. Green Energy&Environment, 2023, 8(6): 1719-1727. doi: 10.1016/j.gee.2022.04.003
Citation: Ran Xi, Yiwei Tang, Richard Lee Smith, Xiaoning Liu, Le Liu, Xinhua Qi. Selective hydrogenation of glucose to sorbitol with tannic acid-based porous carbon sphere supported Ni-Ru bimetallic catalysts. Green Energy&Environment, 2023, 8(6): 1719-1727. doi: 10.1016/j.gee.2022.04.003

Selective hydrogenation of glucose to sorbitol with tannic acid-based porous carbon sphere supported Ni-Ru bimetallic catalysts

doi: 10.1016/j.gee.2022.04.003
  • Ni-Ru bimetallic porous carbon sphere (Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were used as carbon precursor and soft template, respectively, and Ni2+ and Ru3+ were used as cross-linkers. In the developed method, Ni-Ru particles became uniformly dispersed in the carbon skeleton due to strong coordination bonds between metal ions (Ni2+ and Ru3+) and tannic acid molecules and bimetal interactions. The as-synthesized Ni-Ru10:1@PCS catalyst with a loading Ni:Ru mole ratio of 10:1 was applied for the selective hydrogenation of glucose to sorbitol, and provided 99% glucose conversion with a sorbitol selectivity of 100% at 140 ℃ in 150 min reaction time and exhibited good stability and recyclability in which sorbitol yield remained at 98% after 4 cycles with little or no metal agglomeration. The catalyst was applied to glucose solutions as high as 20 wt% with 97% sorbitol yields being obtained at 140 ℃ in 20 h. The developed bimetallic porous carbon sphere catalysts take advantage of sustainably-derived materials in their structure and are applicable to related biomass conversion reactions.

     

  • loading
  • [1]
    J.J. Bozell; G.R. Petersen, Green Chemistry 12 (2010) 539-554.
    [2]
    T. Fang; Y. Cai; Q. Yang; C.O. Ogutu; L. Liao; Y. Han, Journal of the Science of Food and Agriculture 100 (2020) 139-144.
    [3]
    W. Zhang; J. Chen; Q. Chen; H. Wu; W. Mu, Applied Microbiology and Biotechnology 104 (2020) 1-9.
    [4]
    B. Garcia; A. Orozco-Saumell; M. Lopez Granados; J. Moreno; J. Iglesias, Acs Sustainable Chemistry & Engineering 9 (2021) 14857-14867.
    [5]
    M.M. Silveira; R. Jonas, Applied Microbiology and Biotechnology 59 (2002) 400-408.
    [6]
    D. Leigh; R.K. Scopes; P.L. Rogers, Applied Microbiology and Biotechnology 20 (1984) 413-415.
    [7]
    U.H. Chun; P.L. Rogers, Applied Microbiology & Biotechnology 29 (1988) 19-24.
    [8]
    V. Ladero; A. Ramos; A. Wiersma; P. Goffin; A. Schanck; M. Kleerebezem; J. Hugenholtz; E.J. Smid; P. Hols, Applied and Environmental Microbiology 73 (2007) 1864-1872.
    [9]
    R. Jonas; M.M. Silveira, Applied Biochem Biotechnol 118 (2004) 321-336.
    [10]
    I. Bonnin; R. Mereau; T. Tassaing; F. Jerme; K. Vigier, ACS Sustainable Chemistry & Engineering 9 (2021) 9240-9247.
    [11]
    A. Jgabs; B. Rcsa; C. Rc; A. Lsgt; A. Lamp, Molecular Catalysis 507 (2021) 111567.
    [12]
    H. Singh; A. Rai; R. Yadav; A.K. Sinha, Journal of Molecular Catalysis A Chemical 451 (2018) 186-191.
    [13]
    Y. Fu; L. Ding; M.L. Singleton; H. Idrissi; S. Hermans, Applied Catalysis B:Environmental 288 (2021) 119997.
    [14]
    J. Ge; D. Zhang; Y. Qin; T. Dou; M. Jiang; F. Zhang; X. Lei, Applied Catalysis B-Environmental 298 (2021) 120557.
    [15]
    Y. Guo; H. He; X. Liu; Z. Chen; R.M. Rioux; M.J. Janik; P.E. Savage, Chemical Engineering Journal 406 (2021) 126853.
    [16]
    X. Liu; F. Shen; X. Qi, Science of the Total Environment 666 (2019) 694-702.
    [17]
    S. Yin; S. Liu; S. Jiao; H. Zhang; Y. Xu; Z. Wang; X. Li; L. Wang; H. Wang, J. Mater. Chem. A 9 (2021) 15678-15683.
    [18]
    S. Basak; A.S.M. Raja; S. Saxena; P.G. Patil, Polymer Degradation and Stability 189 (2021) 109603.
    [19]
    Z. Guo; W. Xie; J. Lu; X. Guo; J. Xu; W. Xu; Y. Chi; N. Takuya; H. Wu; L. Zhao, Journal of Materials Chemistry B 9 (2021) 4098-4110.
    [20]
    J. Guo; Y. Ping; H. Ejima; K. Alt; M. Meissner; J.J. Richardson; Y. Yan; K. Peter; D. Von Elverfeldt; C.E. Hagemeyer; F. Caruso, Angewandte Chemie-International Edition 53 (2014) 5546-5551.
    [21]
    H. Ejima; J.J. Richardson; K. Liang; J.P. Best; M.P. Van Koeverden; G.K. Such; J.W. Cui; F. Caruso, Science 341 (2013) 154-157.
    [22]
    Z. Lin; J. Zhou; C. Cortez-Jugo; Y. Han; Y. Ma; S. Pan; E. Hanssen; J.J. Richardson; F. Caruso, Journal of the American Chemical Society 142 (2020) 335-341.
    [23]
    J. Tang; Y. Yamauchi, Nature Chemistry 8 (2016) 638-639.
    [24]
    P. Qiu; B. Ma; C.T. Hung; W. Li; D. Zhao, Accounts of Chemical Research 52 (2019) 2928-2938.
    [25]
    C.K. Wong; X. Qiang; A.H.E. Mueller; A.H. Groeschel, Progress in Polymer Science 102 (2020) 101211.
    [26]
    M. Liu; C. Chao; L. Jian; Z. Jing; T. Wei; L. Rui, Journal of Colloid & Interface Science 528 (2018) 1-9.
    [27]
    G. Wang; J. Qin; X. Zhou; Y. Deng; H. Wang; Y. Zhao; J. Wei, Advanced Functional Materials 28 (2018) 1806144.
    [28]
    J. Wei; G. Wang; F. Chen; M. Bai; Y. Liang; H.T. Wang; D.Y. Zhao; Y.X. Zhao, Angewandte Chemie-International Edition 57 (2018) 9838-9843.
    [29]
    J. Wei; Y. Liang; Y. Hu; B. Kong; J. Zhang; Q. Gu; Y. Tong; X. Wang; S.P. Jiang; H. Wang, Angewandte Chemie-International Edition 55 (2016) 12470-12474.
    [30]
    J.E.S. Van Der Hoeven; T.a.J. Welling; T.a.G. Silva; J.E. Van Den Reijen; C. La Fontaine; X. Carrier; C. Louis; A. Van Blaaderen; P.E. De Jongh, ACS Nano 12 (2018) 8467-8476.
    [31]
    J.E.S. Van Der Hoeven; J. Jelic; L.A. Olthof; G. Totarella; R.J.A. Van Dijk-Moes; J.-M. Krafft; C. Louis; F. Studt; A. Van Blaaderen; P.E. De Jongh, Nature Materials 20 (2021) 1216-1221.
    [32]
    G. Chen; S. Desinan; R. Rosei; F. Rosei; D. Ma, Chem. Eur. J. 18 (2012) 7925-7930.
    [33]
    N. Rey-Raap; L.S. Ribeiro; J.J. De Melo Orfao; J.L. Figueiredo; M.F. Ribeiro Pereira, Applied Catalysis B:Environmental 256 (2019) 117826.
    [34]
    A.A. Dabbawala; D.K. Mishra; J.-S. Hwang, Catalysis Today 265 (2016) 163-173.
    [35]
    Y. Yang; S. Shao; F. Yang; D.L. Brewe; S. Hao, Green Chemistry 23 (2021) 4477-4489.
    [36]
    Y. Tang; M. Qiu; J. Yang; F. Shen; X. Wang; X. Qi, Green Chemistry 23 (2021) 1861-1870.
    [37]
    L.P. Claus, Applied Catalysis A:General 318 (2007) 45-53.
    [38]
    B. Kusserow; S. Schimpf; P. Claus, Advanced Synthesis & Catalysis 345 (2003) 289.
    [39]
    J. Zhang; S. Wu; Y. Liu; B. Li, Catalysis Communications 35 (2013) 23-26.
    [40]
    B. Zada; L. Yan; Y. Fu, Science China Chemistry 61 (2018) 1167-1174.
    [41]
    J. Pan; J. Li; C. Wang; Z. Yang, Reaction Kinetics and Catalysis Letters 90 (2007) 233-242.
    [42]
    G. Zhang; T. Chen; Y. Zhang; T. Liu; G. Wang, New Journal of Chemistry 44 (2020) 15169-15176.
    [43]
    Y. Mi; B. Dwp; S. Man, Catalysis Today 352 (2020) 88-94.
    [44]
    Romero; Alberto; Nieto-Marquez; Antonio; Alonso; Esther, Applied Catalysis A:General 529 (2017) 49-59.
    [45]
    X. Wang; M. Qiu; R.L. Smith, Jr.; J. Yang; F. Shen; X. Qi, ACS Sustainable Chemistry & Engineering 8 (2020) 18157-18166.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (117) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return