Volume 8 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Gongxun Zhai, Qianqian Wang, Fuyao Liu, Zexu Hu, Chao Jia, Dengxin Li, Hengxue Xiang, Meifang Zhu. One-step floating conversion of biomass into highly graphitized and continuous carbon nanotube yarns. Green Energy&Environment, 2023, 8(6): 1711-1718. doi: 10.1016/j.gee.2022.04.002
Citation: Gongxun Zhai, Qianqian Wang, Fuyao Liu, Zexu Hu, Chao Jia, Dengxin Li, Hengxue Xiang, Meifang Zhu. One-step floating conversion of biomass into highly graphitized and continuous carbon nanotube yarns. Green Energy&Environment, 2023, 8(6): 1711-1718. doi: 10.1016/j.gee.2022.04.002

One-step floating conversion of biomass into highly graphitized and continuous carbon nanotube yarns

doi: 10.1016/j.gee.2022.04.002
  • The rapid growth of the demand for carbon nanotubes (CNTs) has greatly promoted their large-scale synthesis and development. However, the continuous production of CNT fibers by floating catalyst chemical vapor deposition (FCCVD) requires a large amount of non-renewable carbon sources. Here, the continuous production of highly graphitized CNT yarns from biomass tannic acid (TA) is reported. The chelation of TA and catalyst promotes the rapid cracking of biomass into carbon source gas, and the pyrolysis cracking produces the reducing gas, which solves the problems of the continuous production of CNT yarns using biomass. Through simple twisting, the mechanical strength of CNT yarn can reach 886 ±46 MPa, and the electrical conductivity and graphitization (IG/ID) can reach 2×105 S m-1 and 6.3, respectively. This work presents a promising solution for the continuous preparation of CNT yarns based on green raw material.

     

  • loading
  • [1]
    S. Iijima, Nature 354 (1991) 56-58.
    [2]
    H. Zhang, L. Huang, J.F. Zhai, S.J. Dong, J. Am. Chem. Soc. 141 (2019) 16416-16421.
    [3]
    J. Zeng, W. Ma, Q. Wang, S. Yu, M.T. Innocent, H. Xiang, M. Zhu, Compos. Commun. 25 (2021) 100735.
    [4]
    M.T. Innocent, W. Ma, H. Xiang, J. Zhou, S. Yu, M. Zhu. Mater. Des. 205(2021) 109715.
    [5]
    Y.K. Kim, Y.J. Kim, J. Park, S. W. Han, S.M. Kim, Carbon 173 (2021) 376-383.
    [6]
    Z. Guo, Y. Li, R. Zhang, Z. Lu. J. Text. Res. 43 (2022) 74-80.
    [7]
    N.Hiremath, J. Mays, G. Bhat, Polym. Rev. 57 (2016) 339-368.
    [8]
    L. Zhang, X. Ma, Y. Zhang, P.D. Bradford, Y.T. Zhu, Nanotechnology 32 (2021) 265702.
    [9]
    A.B. Dalton, S. Collins, E. MunOz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman. Nature 423 (2003) 703.
    [10]
    L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, AN.G Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W.F. Hwang, R. H. Hauge, J. E. Fischer, R. E. Smalley, Science 305 (2004) 1447-1450.
    [11]
    X.F. Zhang, Q.W. Li, Y. Tu, Y. Li, J.Y. Coulter, L.X. Zheng, Y.H. Zhao,Q.X. Jia, D.E. Peterson, Y.T. Zhu, Small 3 (2007) 244-248.
    [12]
    M. Zhang, K.R. Atkinson, R.H. Baughman, Science 306 (2004) 1358-1361.
    [13]
    Y.L. Li, I.A. Kinoch, A.H. Windle, Science 304 (2004) 276-278.
    [14]
    X.H. Zhang, W.B. Lu, G.H, Zhou, Q.W. Li, Adv. Mater. 32 (2019) 1902028.
    [15]
    S. Zhu, C.H. Su, J.C. Cochranea, S. Lehoczky, Y.Cui, A.Burger, J. Cryst. Growth 234 (2002) 584-588.
    [16]
    K. Hernadi, A. Fonseca, J. B.Nagy, A. Siska, I. Kiricsi, Appl. Catal. A-Gen 199 (2000) 245-255.
    [17]
    G.H. Luo, Z.F. Li, F. Wei, L. Xiang, X.Y. Deng, Y. Jin, Physica B 323 (2002) 314-317.
    [18]
    L.J. Ci, J.Q. Wei, B.Q. Wei, J. Liang, C.L. Xu, D.H. Wu, Carbon 39 (2001) 329-335.
    [19]
    J.N. Wang, X.G. Luo, T. Wu, Y. Chen, Nat. Commun. 5 (2014) 3848.
    [20]
    Z.H. Kang, E.B. Wang, B.D. Mao, Z.M. Su, L. Chen, L. Xu, Nanotechnology 16 (2005) 1192.
    [21]
    T. Abdel-Fattah, E.J. Siochi, R.E. Crooks, Fullerenes, Nanotubes Carbon Nanostruct. 14 (2006) 585-594.
    [22]
    M. Kumar, A. Yoshinori, J. Phys. Conf. Ser. 61 (2007) 643.
    [23]
    R. Kumar, R. S. Tiwari, O. N. Srivastava, Nanoscale. Res. Lett. 6 (2011) 92.
    [24]
    P. Ghosh, R. A. Afre. T.Soga, T.Jimbo, Mater. Lett. 61 (2007) 3768-3770.
    [25]
    K. Bazaka, M.V. Jacob, K.K. Ostrikov, Chem. Rev. 116 (2016) 163-214.
    [26]
    J. Gong, X.C. Chen, T. Tang, Prog. Polym. Sci. 94 (2019) 1-32.
    [27]
    Z.H. Wang, D.K. Shen, C.F. Wu, S. Gu, Green Chem. 20 (2018) 5031.
    [28]
    Y.S. Zhang, H.L. Zhu, D.D. Yao, P.T. Williams, C.F. Wu, D. Xu, Q. Hu, G. Manos, L. Yu, M. Zhao, P. R. Shearing, D. J. L. Brett, Sustain. Energ. Fuels 5 (2021) 4173.
    [29]
    J. Lee, D.M. Lee, Y. Jung, J. Park, H.S. Lee, Y.K. Kim, C.R. Park, H.S. Jeong, S.M. Kim, Nat. Commun. 10 (2019) 2962.
    [30]
    Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, ACS Nano 4 (2010) 1790-1798.
    [31]
    T.I.T.Okpalugo, P. Papakonnstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon 43 (2005) 153-161.
    [32]
    W. Wang, S.R. Guo, M. Pencheav, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, C.S.Ozkan, Nano Energy 2 (2013) 294-303.
    [33]
    T.S. Gspann, F.R. Smail, A.H. Windle, Faraday Discuss. 173 (2014) 47-65.
    [34]
    A. Allahbakhsh, A.R. Bahramian, Nanoscale 7 (2015) 14139-14158.
    [35]
    H.L. Cheng, K. L. Peter Koh, P. Liu, T.Q.Thang, H.M. Duong, Colloids Surf., A 481 (2015) 626-632.
    [36]
    M. Motta, A. Moisala, I.A. Kinloch, A.H. Windle, Adv. Mater. 19 (2007) 3721-3726.
    [37]
    M. Zhang, F.L.P. Resende, A. Moutsoglou, D.E.Raynie, J. Anal. Appl. Pyrol. 98 (2012) 65-71.
    [38]
    D. Ferdous, A.K. Dalai, S.K. Bej, R.W. Thring, N.N. Bakhshi, Fuel. Process. Technol. 70 (2001) 9-26.
    [39]
    M. Jiang, Zhejiang Sci-Tech University Hangzhou, 2019.
    [40]
    Y. Ma, A.B. Dichiara, D.L. He, L. Zimmer, J.B. Bai, Carbon 107 (2016) 171-179.
    [41]
    K. Hata, D.N. Futaba. K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306 (2004) 1362-1364.
    [42]
    Y.S. Zhang, P.T. Williams. J. Anal. Appl. Pyrol. 122 (2016) 490-501.
    [43]
    J.N. Wang, X.G. Luo, T. Wu, Y. Chen, Nat. Commun. 5 (2014) 3848.
    [44]
    X.H. Zhong, Y.L. Li, Y.K. Liu, X.H. Qiao, Y. Feng, J. Liang, J. Jin, L. Zhu, F. Hou, J.Y. Li, Adv. Mater. 22 (2010) 692-696.
    [45]
    Z. Xu, C. Gao, Nat. Commun. 2 (2011) 571.
    [46]
    F. Yin, J.C. Hu, Z.L. Hong, H. Wang, G. Liu, J. Shen, H.L. Wang, K.Q. Zhang, RSC Adv. 10 (2020) 5722-5733.
    [47]
    H.B. Chang, J. Luo, H.C. Liu, S.L. Zhang, J.G. Park, R. Liang, S. Kumar, Carbon 145 (2019) 764-771.
    [48]
    G.X. Zhai, J.L. Zhou, H.X. Xiang, M.T. Innocent, S.Y. Yu, W.N. Pan, L.L. Li, M.F. Zhu, Prog. Nat. Sci. 31 (2021) 239-247.
    [49]
    S. Tardieu, D. Mesguich, A. Lonjon, F. Lecouturier, N. Ferreira, G. Chevallier, A. Proietti, C. Estournes, C. Laurent, Mat. Sci. Eng. A-Struct. 761 (2019) 138048.
    [50]
    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339 (2013) 535-539.
    [51]
    M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 114 (2014) 1827-1870.
    [52]
    X.D. Ye, Q. Yang, Y.F. Zheng, W.M. Mo, J.G. Hu, W.Z. Huang, Mater. Res. Bull. 51 (2014) 366-371.
    [53]
    N.A. Fathy, RSC Adv. 7 (2017) 28535-28541.
    [54]
    E. Ruiz-Hitzky, M. Darder, F.M. Fernandes, E. Zatile, F.J. Palomares, P. Aranda, Adv. Mater. 23 (2011) 5250-5255.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (322) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return