Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Guangjin Zhao, Wenjing Han, Liangliang Dong, Hongwei Fan, Zhou Qu, Jiahui Gu, Hong Meng. Sprayed separation membranes: A systematic review and prospective opportunities. Green Energy&Environment, 2022, 7(6): 1143-1160. doi: 10.1016/j.gee.2022.04.001
Citation: Guangjin Zhao, Wenjing Han, Liangliang Dong, Hongwei Fan, Zhou Qu, Jiahui Gu, Hong Meng. Sprayed separation membranes: A systematic review and prospective opportunities. Green Energy&Environment, 2022, 7(6): 1143-1160. doi: 10.1016/j.gee.2022.04.001

Sprayed separation membranes: A systematic review and prospective opportunities

doi: 10.1016/j.gee.2022.04.001
  • Membrane separation technology has been taken up for use in diverse applications such as water treatment, pharmaceutical, petroleum, and energy-related industries. Compared with the design of membrane materials, the innovation of membrane preparation technique is more urgent for the development of membrane separation technology, because it not only affects physicochemical properties and separation performance of the fabricated membranes, but also determines their potential in industrialized application. Among the various membrane preparation methods, spray technique has recently gained increasing attention because of its low cost, rapidity, scalability, minimum of environmental burden, and viability for nearly unlimited range of materials. In this Review article, we summarized and discussed the recent developments in separation membranes using the spray technique, including the fundamentals, important features and applications. The present challenges and future considerations have been touched to provide inspired insights for developing the sprayed separation membranes.

     

  • loading
  • [1]
    H. Song, X. Meng, Z. Wang, H. Liu, J. Ye, Joule 3 (2019) 1606–1636.
    [2]
    M. Ravi, M. Ranocchiari, J.A. van Bokhoven, Angew. Chem. Int. Ed. 56 (2017) 16464–16483.
    [3]
    C.G. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A 107 (2003) 4184–4195.
    [4]
    R.D. Amos, Mol. Phys. 38 (1979) 33–45.
    [5]
    J. Berkowitz, J.P. Greene, H. Cho, B. Ruscic, J. Phys. Chem. 86 (1987) 674–676.
    [6]
    Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies, first ed., CRC Press, Boca Raton, 2007.
    [7]
    P. Tang, Q. Zhu, Z. Wu, D. Ma, Energy Environ. Sci. 7 (2014) 2580–2591.
    [8]
    S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, Int. J. Hydrogen Energy 39 (2014) 1979–1997.
    [9]
    F. Che, J.T. Gray, S. Ha, J.S. McEwen, ACS Catal. 7 (2017) 551–562.
    [10]
    D. Ligthart, R. van Santen, E. Hensen, J. Catal. 280 (2011) 206–220.
    [11]
    J. Jang, K. Shen, C.G. Morales-Guio, Joule 3 (2019) 1–5.
    [12]
    J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan, Y. Deng, Y. Zhang, S. Yao, G. Sankar, D. Ma, J. Tang, Nat. Catal. 11 (2018) 889–896.
    [13]
    H. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako, J. Ye, J. Am. Chem. Soc. 141 (2019) 20507–20515.
    [14]
    X. Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, F. Yang, L. He, X. Chen, Q. Li, J. Xiao, D. Deng, X. Bao, Chem 4 (2018) 1902–1910.
    [15]
    Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang, C. Wang, X. Meng, H. Yang, C. Mesters, F. Xiao, Science 367 (2020) 193–197.
    [16]
    S. Yuan, Y. Li, J. Peng, Y.M. Questell-Santiago, K. Akkiraju, L. Giordano, D.J. Zheng, S. Bagi, Y. Román-Leshkov, Y. Shao-Horn, Adv. Energy Mater. 10 (2020) 2002154.
    [17]
    Y. Tian, L. Piao, X. Chen, Green Chem. 23 (2021) 3526–3541.
    [18]
    X. Meng, X. Cui, N. Rajan, L. Yu, D. Deng, X. Bao, Chem 5 (2019) 2296–2325.
    [19]
    X. Cui, R. Huang, D. Deng, EnergyChem 3 (2020) 100050.
    [20]
    S. Xie, S. Lin, Q. Zhang, Z. Tian, Y. Wang, J. Energy Chem. 27 (2018) 1629–1636.
    [21]
    L. Arnarson, P. Schmidt, M. Pandey, A. Bagger, K. Thygesen, I. Stephensc, J. Rossmeisl, Phys. Chem. Chem. Phys. 20 (2018) 11152–11159.
    [22]
    A. Prajapati, B.A. Collins, J.D. Goodpaster, M.R. Singh, Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2023233118.
    [23]
    A. Tomita, J. Nakajima, T. Hibino, Angew. Chem. Int. Ed. 47 (2008) 1462–1464.
    [24]
    B. Lee, Y. Sakamoto, D. Hirabayashi, K. Suzuki, T. Hibino, J. Catal. 271 (2010) 195–200.
    [25]
    C. Li, Y. Zhang, D. Li, B. Wang, C. Russell, M. Fan, R. Zhang, Green Energy Environ. https://doi.org/10.1016/j.gee.2021.06.001.
    [26]
    B. Lee, T. Hibino, J. Catal. 279 (2011) 233–240.
    [27]
    B. Shelimov, C. Naccache, M. Che, J. Catal. 37 (1975) 279–286.
    [28]
    P. Promoppatum, V. Viswanathan, ACS Sustain. Chem. Eng. 4 (2016) 1736–1745.
    [29]
    A. Torabi, J. Barton, C. Willman, H. Ghezel-Ayagh, N. Li, A. Poozhikunnath, R. Maric, O. Marina, ECS Trans. 72 (2016) 193.
    [30]
    R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science 280 (1998) 560–564.
    [31]
    T. Zimmermann, M. Soorholtz, M. Bilke, F. Schuth, J. Am. Chem. Soc. 138 (2016) 12395–12400.
    [32]
    R. Kim, Y. Surendranath, ACS Cent. Sci. 5 (2019) 1179–1186.
    [33]
    B. Wayland, S. Ba, A. Sherry, J. Am. Chem. Soc. 113 (1991) 5305–5311.
    [34]
    B. Natinsky, S. Lu, E. Copeland, J. Quintana, C. Liu, ACS Cent. Sci. 5 (2019) 1584–1590.
    [35]
    M. O'Reilly, R. Kim, S. Oh, Y. Surendranath, ACS Cent. Sci. 3 (2017) 1174–1179.
    [36]
    A. Antzara, E. Heracleous, L. Silvester, D.B. Bukur, A.A. Lemonidou, Catal. Today 272 (2016) 32–41.
    [37]
    S. Wang, T. Itoh, T. Fujimori, M. Castro, A. Silvestre-Albero, F. Rodríguez-Reinoso, T. Ohba, H. Kanoh, M. Endo, K. Kaneko, Langmuir 28 (2012) 7564–7571.
    [38]
    M. Jafarian, M. Mahjani, H. Heli, F. Gobal, M. Heydarpoor, Electrochem. Commun. 5 (2003) 184–188.
    [39]
    J. Qiao, H. Li, Y. Chang, S. Guan, S. Shuang, C. Dong, Anal. Lett. 41 (2008) 593–598.
    [40]
    N. Spinner, W. Mustain, J. Electrochem. Soc. 160 (2013) F1275–F1281.
    [41]
    J. Zhang, C. Oloman, J. Appl. Electrochem. 35 (2005) 945–953.
    [42]
    K. Fuku, K. Sayama, Chem. Commun. 52 (2016) 5406–5409.
    [43]
    H. Ahn, T. Marks, J. Am. Chem. Soc. 120 (1998) 13533–13534.
    [44]
    B. Samaranch, P. Piscina, G. Clet, M. Houalla, P. Gélin, N. Homs, Chem. Mater. 19 (2007) 1445–1451.
    [45]
    Z. Guo, W. Chen, Y. Song, X. Dong, G. Li, W. Wei, Y. Sun, Chin. J. Catal. 41 (2020) 1067–1072.
    [46]
    Y. Song, Y. Zhao, G. Nan, W. Chen, Z. Guo, S. Li, Z. Tang, W. Wei, Y. Sun, Appl. Catal. B Environ. 270 (2020) 118888.
    [47]
    L. Chen, B. Yang, X. Zhang, W. Dong, K. Cao, X. Zhang, Energy Fuels 20 (2006) 915–918.
    [48]
    R. Rocha, L. Camargo, M. Lanza, R. Bertazzoli, Electrocatalysis 1 (2010) 224–229.
    [49]
    R. Rocha, R. Reis, M. Lanza, R. Bertazzoli, Electrochim. Acta 87 (2013) 606–610.
    [50]
    M. Sarno, E. Ponticorvo, N. Funicello, S. De Pasquale, Appl. Catal. A - Gen. 603 (2020) 117746.
    [51]
    M. Ma, B. Jin, P. Li, M. Jung, J. Kim, Y. Cho, S. Kim, J. Moon, J. Park, Adv. Sci. 4 (2017) 1700379.
    [52]
    C. Oh, J. Kim, Y. Hwang, M. Ma, J. Park, Appl. Catal. B Environ. 283 (2021) 119653.
    [53]
    J. Lee, J. Yang, J. Moon, ACS Energy Lett. 6 (2021) 893–899.
    [54]
    M. Hayyan, M. Hashim, I.M. AlNashef, Chem. Rev. 116 (2016) 3029–3085.
    [55]
    H. Jiang, Y. Cheng, Z. Wang, Z. Bai, Y. Tang, Y. Sun, P. Wan, Y. Chen, J. Electrochem. Soc. 168 (2021) 016504.
    [56]
    L. Wang, S. Liu, H. Jiang, Y.Y. Chen, L.N. Wang, G. Duan, Y. Sun, Y. Chen, P. Wan, J. Electrochem. Soc. 165 (2018) H705–H710.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (239) PDF downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return