Volume 8 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Luming Wu, Ruge Zhao, Guo Du, Huan Wang, Machuan Hou, Wei Zhang, Pingchuan Sun, Tiehong Chen. Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance. Green Energy&Environment, 2023, 8(6): 1693-1702. doi: 10.1016/j.gee.2022.03.014
Citation: Luming Wu, Ruge Zhao, Guo Du, Huan Wang, Machuan Hou, Wei Zhang, Pingchuan Sun, Tiehong Chen. Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance. Green Energy&Environment, 2023, 8(6): 1693-1702. doi: 10.1016/j.gee.2022.03.014

Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance

doi: 10.1016/j.gee.2022.03.014
  • Heteroatom-doped carbon-based transition-metal single-atom catalysts (SACs) are promising electrocatalysts for oxygen reduction reaction (ORR). Herein, with the aid of hierarchically porous silica as hard template, a facile and general melting perfusion and mesopore-confined pyrolysis method was reported to prepare single-atomic Fe/N-S-doped carbon catalyst (FeNx/NC-S) with hierarchically porous structure and well-defined morphology. The FeNx/NC-S exhibited excellent ORR activity with a half-wave potential (E1/2) of 0.92 V, and a lower overpotential of 320 mV at a current density of 10 mA cm-2 for OER under alkaline condition. The remarkable electrocatalysis performance can be attributed to the hierarchically porous carbon nanospheres with S doping and high content of Fe-Nx sites (up to 3.7 wt% of Fe), resulting from the nano-confinement effect of the hierarchically porous silica spheres (NKM-5) during the pyrolysis process. The rechargeable Zn-air battery with FeNx/NC-S as a cathode catalyst demonstrated a superior power density of 194.5 mW cm-2 charge-discharge stability. This work highlights a new avenue to design advanced SACs for efficient sustainable energy storage and conversion.

     

  • loading
  • [1]
    M. Xiao, J. Zhu, G. Li, N. Li, S. Li, Z.P. Cano, L. Ma, P. Cui, P. Xu, G. Jiang, H. Jin, S. Wang, T. Wu, J. Lu, A. Yu, D. Su, Z. Chen, Angew. Chem. Int. Ed., 58 (2019) 9640-9645.
    [2]
    Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem Soc Rev, 44 (2015) 2060-2086.
    [3]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Science 355 (2017) eaad4998.
    [4]
    Y. Li, M. Gong, Y. Liang, J. Feng, J.E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat Commun, 4 (2013) 1805.
    [5]
    Y. Jiang, Y.-P. Deng, R. Liang, J. Fu, D. Luo, G. Liu, J. Li, Z. Zhang, Y. Hu, Z. Chen, Adv. Energy Mater., 9 (2019) 1900911.
    [6]
    M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Chem Rev, 116 (2016) 3594-3657.
    [7]
    Q. Du, Y. Gong, M.A. Khan, D. Ye, J. Fang, H. Zhao, J. Zhang, Green Energy Environ., 7 (2022) 16-34.
    [8]
    C. Zhu, Q. Shi, B.Z. Xu, S. Fu, G. Wan, C. Yang, S. Yao, J. Song, H. Zhou, D. Du, S.P. Beckman, D. Su, Y. Lin, Adv. Energy Mater., 8 (2018) 1801956.
    [9]
    L. Lin, Q. Zhu, A.-W. Xu, J. Am. Chem. Soc., 136 (2014) 11027-11033.
    [10]
    M. Liu, L. Wang, K. Zhao, S. Shi, Q. Shao, L. Zhang, X. Sun, Y. Zhao, J. Zhang, Energ. Environ. Sci., 12 (2019) 2890-2923.
    [11]
    J. Wang, W. Liu, G. Luo, Z. Li, C. Zhao, H. Zhang, M. Zhu, Q. Xu, X. Wang, C. Zhao, Y. Qu, Z. Yang, T. Yao, Y. Li, Y. Lin, Y. Wu, Y. Li, Energ. Environ. Sci., 11 (2018) 3375-3379.
    [12]
    Z. Li, H. He, H. Cao, S. Sun, W. Diao, D. Gao, P. Lu, S. Zhang, Z. Guo, M. Li, R. Liu, D. Ren, C. Liu, Y. Zhang, Z. Yang, J. Jiang, G. Zhang, Appl. Catal. B, 240 (2019) 112-121.
    [13]
    Y. Lian, W. Yang, C. Zhang, H. Sun, Z. Deng, W. Xu, L. Song, Z. Ouyang, Z. Wang, J. Guo, Y. Peng, Angew. Chem. Int. Ed., 59 (2020) 286-294.
    [14]
    H. Yang, R. Shi, L. Shang, T. Zhang, Small Struct., 2 (2021) 2100007.
    [15]
    H. Li, Y. Chen, Q. Jin, W. Xiang, B. Zhong, X. Guo, B. Wang, Green Energy Environ., 6 (2021) 506-516.
    [16]
    H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. Wu, J. Am. Chem. Soc., 139 (2017) 14143-14149.
    [17]
    X. Fu, P. Zamani, J.-Y. Choi, F.M. Hassan, G. Jiang, D.C. Higgins, Y. Zhang, M.A. Hoque, Z. Chen, Adv. Mater., 29 (2017) 1604456.
    [18]
    X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal., 2 (2019) 259-268.
    [19]
    J. Feng, R. Cai, E. Magliocca, H. Luo, L. Higgins, G.L.F. Romario, X. Liang, A. Pedersen, Z. Xu, Z. Guo, A. Periasamy, D. Brett, T.S. Miller, S.J. Haigh, B. Mishra, M.-M. Titirici, Adv. Funct. Mater., 31 (2021) 2102974.
    [20]
    L. Jiao, J. Li, L.L. Richard, Q. Sun, T. Stracensky, E. Liu, M.T. Sougrati, Z. Zhao, F. Yang, S. Zhong, H. Xu, S. Mukerjee, Y. Huang, D.A. Cullen, J.H. Park, M. Ferrandon, D.J. Myers, F. Jaouen, Q. Jia, Nat. Mater., 20 (2021) 1385-1391.
    [21]
    Y. Xiong, W. Sun, Y. Han, P. Xin, X. Zheng, W. Yan, J. Dong, J. Zhang, D. Wang, Y. Li, Nano Res., 14 (2021) 2418-2423.
    [22]
    Y. Wang, X. Zheng, D. Wang, Nano Res., 15 (2022) 1730-1752.
    [23]
    M. Qiao, Y. Wang, Q. Wang, G. Hu, X. Mamat, S. Zhang, S. Wang, Angew. Chem. Int. Ed., 59 (2020) 2688-2694.
    [24]
    J. Han, X. Meng, L. Lu, J. Bian, Z. Li, C. Sun, Adv. Funct. Mater., 29 (2019) 1808872.
    [25]
    H. Yuan, Y. Hou, Z. Wen, X. Guo, J. Chen, Z. He, ACS Appl. Mater. Interfaces, 7 (2015) 18672-18678.
    [26]
    G. Ye, Q. He, S. Liu, K. Zhao, Y. Su, W. Zhu, R. Huang, Z. He, J. Mater. Chem. A, 7 (2019) 16508-16515.
    [27]
    C. Shi, G. Du, J. Wang, P. Sun, T. Chen, Langmuir, 36 (2020) 1851-1863.
    [28]
    J.-G. Wang, H.-J. Zhou, P.-C. Sun, D.-T. Ding, T.-H. Chen, Chem. Mater., 22 (2010) 3829-3831.
    [29]
    S. Lai, L. Xu, H. Liu, S. Chen, R. Cai, L. Zhang, W. Theis, J. Sun, D. Yang, X. Zhao, J. Mater. Chem. A, 7 (2019) 21884-21891.
    [30]
    P. Xu, J. Zhang, G. Jiang, F. Hassan, J.-Y. Choi, X. Fu, P. Zamani, L. Yang, D. Banham, S. Ye, Z. Chen, Nano Energy, 51 (2018) 745-753.
    [31]
    P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Angew. Chem. Int. Ed., 56 (2017) 610-614.
    [32]
    C. Han, X. Bo, Y. Zhang, M. Li, L. Guo, J. Power Sources, 272 (2014) 267-276.
    [33]
    B.-C. Hu, Z.-Y. Wu, S.-Q. Chu, H.-W. Zhu, H.-W. Liang, J. Zhang, S.-H. Yu, Energ. Environ. Sci., 11 (2018) 2208-2215.
    [34]
    B. Ni, R. Chen, L. Wu, X. Xu, C. Shi, P. Sun, T. Chen, ACS Appl. Mater. Interfaces, 12 (2020) 23995-24006.
    [35]
    J. Li, H. Zhang, W. Samarakoon, W. Shan, D.A. Cullen, S. Karakalos, M. Chen, D. Gu, K.L. More, G. Wang, Z. Feng, Z. Wang, G. Wu, Angew. Chem. Int. Ed., 58 (2019) 18971-18980.
    [36]
    Z. Huang, H. Pan, W. Yang, H. Zhou, N. Gao, C. Fu, S. Li, H. Li, Y. Kuang, ACS Nano, 12 (2018) 208-216.
    [37]
    Z.Y. Wu, X.X. Xu, B.C. Hu, H.W. Liang, Y. Lin, L.F. Chen, S.H. Yu, Angew. Chem. Int. Ed., 54 (2015) 8179-8183.
    [38]
    X. Yang, Y. Wang, G. Zhang, L. Du, L. Yang, M. Markiewicz, J.-y. Choi, R. Chenitz, S. Sun, Appl. Catal. B, 264 (2020) 118523.
    [39]
    J.-T. Ren, Z.-Y. Yuan, J. Mater. Chem. A, 7 (2019) 13591-13601.
    [40]
    K. Qu, Y. Zheng, S. Dai, S.Z. Qiao, Nano Energy, 19 (2016) 373-381.
    [41]
    G. Chen, P. Liu, Z. Liao, F. Sun, Y. He, H. Zhong, T. Zhang, E. Zschech, M. Chen, G. Wu, J. Zhang, X. Feng, Adv. Mater., 32 (2020) e1907399.
    [42]
    A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater., 14 (2015) 937-942.
    [43]
    Q. Wang, Y. Yang, F. Sun, G. Chen, J. Wang, L. Peng, W.-T. Chen, L. Shang, J. Zhao, D. Sun-Waterhouse, T. Zhang, G.I.N. Waterhouse, Adv. Energy Mater., 11 (2021) 2100219.
    [44]
    S. Kattel, G. Wang, J. Mater. Chem. A, 1 (2013) 10790-10797.
    [45]
    J. Liu, Y. Guo, X.-Z. Fu, J.-L. Luo, C. Zhi, Green Energy Environ. 8 (2023) 459-469.
    [46]
    Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater., 10 (2011) 780-786.
    [47]
    Y. Jia, X. Xiong, D. Wang, X. Duan, K. Sun, Y. Li, L. Zheng, W. Lin, M. Dong, G. Zhang, W. Liu, X. Sun, Nano-Micro Lett., 12 (2020) 116.
    [48]
    Y. Lin, L. Yang, Y. Zhang, H. Jiang, Z. Xiao, C. Wu, G. Zhang, J. Jiang, L. Song, Adv. Energy Mater., 8 (2018) 1703623.
    [49]
    Z. Zou, T. Wang, X. Zhao, W.-J. Jiang, H. Pan, D. Gao, C. Xu, ACS Catal., 9 (2019) 7356-7364.
    [50]
    J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu, H. Zhou, C. Sun, Y. Yu, C. Zhu, Z. Zhu, Small, 15 (2019) 1900307.
    [51]
    M. Wang, T. Qian, J. Zhou, C. Yan, ACS Appl. Mater. Interfaces, 9 (2017) 5213-5221.
    [52]
    N. Ranjbar Sahraie, J.P. Paraknowitsch, C. Gobel, A. Thomas, P. Strasser, J. Am. Chem. Soc., 136 (2014) 14486-14497.
    [53]
    Z. Zhou, F. He, Y. Shen, X. Chen, Y. Yang, S. Liu, T. Mori, Y. Zhang, Chem Commun (Camb), 53 (2017) 2044-2047.
    [54]
    J. Yang, S. Park, K.y. Choi, H.-S. Park, Y.-G. Cho, H. Ko, H.-K. Song, ACS Sustain. Chem. Eng., 6 (2018) 9566-9571.
    [55]
    C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu, Y. Xia, C. Yuan, B. Yang, Z. Li, X. Zhang, L. Lei, J. Abbott, Y. Zhong, X. Xia, G. Wu, Q. He, Y. Hou, Adv. Energy Mater., 8 (2018) 1801912.
    [56]
    Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W. Cheong, R. Shen, N. Fu, L. Gu, Z. Zhuang, C. Chen, D. Wang, Q. Peng, J. Li, Y. Li, Adv. Mater. 30 (2018) 1800588.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (312) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return