Volume 8 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Yijun Shi, Xiaolin Guo, Yiyan Wang, Fanzhe Kong, Renxian Zhou. New insight into the design of highly dispersed Pt supported CeO2-TiO2 catalysts with superior activity for VOCs low-temperature removal. Green Energy&Environment, 2023, 8(6): 1654-1663. doi: 10.1016/j.gee.2022.03.009
Citation: Yijun Shi, Xiaolin Guo, Yiyan Wang, Fanzhe Kong, Renxian Zhou. New insight into the design of highly dispersed Pt supported CeO2-TiO2 catalysts with superior activity for VOCs low-temperature removal. Green Energy&Environment, 2023, 8(6): 1654-1663. doi: 10.1016/j.gee.2022.03.009

New insight into the design of highly dispersed Pt supported CeO2-TiO2 catalysts with superior activity for VOCs low-temperature removal

doi: 10.1016/j.gee.2022.03.009
  • A series of CeO2-TiO2 mixed oxides supports with various Ce/Ti molar ratio were synthesized by modified coprecipitation method. The corresponding Pt loaded (0.5 wt% Pt) catalysts were prepared by electronless deposition method and evaluated for the deep oxidation of n-hexane as a model VOCs. The results show that the CeO2 and TiOx nanoparticles can highly disperse into each other and form Ce2Ti2O7 solid solution with appropriate Ce/Ti molar ratio, which significantly improves their redox ability by enhancing the interaction between CeO2 and TiOx. The dispersibility of Pt species can also be adjusted by altering the Ce/Ti molar ratio, and Pt/CeTi-2/1 catalyst with Ce/Ti molar ratio of 2:1 exhibits the best Pt dispersibility that Pt species mainly exist as Pt single atoms. The high dispersion of Pt species in the Pt/CeO2-TiO2 catalysts would promote the catalytic activity of VOCs oxidation with low T90% values (1000 ppm, GHSV = 15,000 h-1), such as for n-hexane degradation with T90% of 139 ℃. The characterizations reveal that the superior activity is mainly related to possessing the more Pt2+ species, adsorbed oxygen species and higher low-temperature reducibility owing to the strong interaction between highly dispersed Pt species and CeO2-TiO2 as well as the promoted migration of lattice oxygen by the formation of more Ce2Ti2O7 species. Furthermore, the Pt/CeTi-2/1 catalyst also exhibits excellent stability for chlorinated and other non-chlorinated VOCs oxidation, making it very promising for real application under various operating conditions.

     

  • loading
  • [1]
    H. Huang, Y. Xu, Q. Feng, D. Leung, Catal. Sci. Technol. 5(2015) 2649-2669.
    [2]
    B. Solsona, E. Aylón, R. Murillo, A. Mastral, A. Monzonís, S. Agouram, T. Davies, S. Taylor, T. Garcia, J. Hazard. Mater. 187(2011) 544-552.
    [3]
    Y. Jiao, X. Chen, F. He, S. Liu, Chem. Eng. J. 372(2019) 107-117.
    [4]
    B. Huang, C. Lei, C. Wei, G. Zeng, Environ. Int. 71(2014) 118-138.
    [5]
    S. Gligorovski, J. Abbatt, Science 359(2018) 632-633.
    [6]
    C. Jiang, D. Li, P. Zhang, J. Li, J. Wang, J. Yu, Build. Environ. 117(2017) 118-126.
    [7]
    K. Zhou, W. Ma, Z. Zeng, X. Ma, X. Xu, Y. Guo, H. Li, L. Li, Chem. Eng. J. 372(2019) 1122-1133.
    [8]
    S. Zhao, F. Hu, J. Li, ACS Catal. 6(2016) 3433-3441.
    [9]
    H. Dai, Sci. Bull. 60(2015) 1708-1710.
    [10]
    X. Qian, M. Ren, D. Yue, Y. Zhu, Y. Han, Z. Bian, Y. Zhao, Appl. Catal. B Environ. 212(2017) 1-6.
    [11]
    H. Huang, D. Leung, ACS Catal. 1(2011) 348-354.
    [12]
    M. Kamal, S. Razzak, M. Hossain, Atmos. Environ. 140(2016) 117-134.
    [13]
    J. Ye, B. Cheng, J. Yu, W. Ho, S. Wageh, A.A. Al-Ghamdi, Chem. Eng. J. 430(2022) 132715.
    [14]
    Y. Dai, X. Wang, Q. Dai, D. Li, Appl. Catal. B Environ. 212(2012) 141-149.
    [15]
    C. He, J. Li, X. Zhang, L. Yin, J. Chen, S. Gao, Chem. Eng. J. 180(2012) 46-56.
    [16]
    Z. Chen, J. Li, P. Yang, Z. Cheng, J. Li, S. Zuo, Chem. Eng. J. 356(2019) 255-261.
    [17]
    Y. Shi, J. Wang, R. Zhou, Chemosphere 265(2021) 129127.
    [18]
    S. Sharma, A. Gupta, M. Hegde, Catal. Lett. 134(2010) 330-336.
    [19]
    S. Rico-Frances, A. Sepulveda-Escribano, E. Ramos-Fernandez, Int. J. Hydrogen Energy 42(2017) 29262-29273.
    [20]
    A. Silva, B. Machado, H. Gomes, J. Figueiredo, G. Drazic, J. Faria, J. Nanopart. Res. 12(2010) 121-133.
    [21]
    K. Huang, L. Lin, K. Yang, W. Dai, X. Chen, X. Fu, Appl. Catal. B Environ. 179(2015) 395-406.
    [22]
    V. Villar, L. Barrio, A. Helmi, M. Annaland, F. Gallucci, J. Fierro, R. Navarro, Catal. Today 268(2016) 95-102.
    [23]
    Q. Feng, S. Zhao, Y. Wang, J. Dong, W. Chen, D. He, D. Wang, J. Yang, Y. Zhu, H. Zhu, L. Gu, Z. Li, Y. Liu, R. Yu, J. Li, Y. Li, J. Am. Chem. Soc. 139(2017) 7294-7301.
    [24]
    L. Liu, A. Corma, Chem. Rev. 118(2018) 4981-5079.
    [25]
    A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2(2018) 65-81.
    [26]
    J. Liu, ACS Catal. 7(2017) 34-59.
    [27]
    C. Zhang, Y. Li, Y. Wang, H. He, Environ. Sci. Technol. 48(2014) 5816-5822.
    [28]
    H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge, J. Ma, B. Wen, S. Zhang, Q. Li, M. Lei, Nat. Commun. 8(2017) 1490-1498.
    [29]
    B. Qiao, A. Wang, X. Yang, L. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 3(2011) 634-641.
    [30]
    H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. Wang, J. Li, S. Wei, J. Lu, J. Am. Chem. Soc. 137(2015) 10484-10487.
    [31]
    Y. Zhai, D. Pierre, R. Si, W. Deng, P. Ferrin, A. Nilekar, G. Peng, J. Herron, D. Bell, H. Saltsburg, M. Mavrikakis, M. Flytzanistephanopoulos, Science 329(2010) 1633-1639.
    [32]
    M. Yang, J. Liu, S. Lee, B. Zugic, J. Huang, L. Allard, F. Stephanopoulos, J. Am. Chem. Soc. 137(2015) 3470-3473.
    [33]
    X. He, Y. Deng, Y. Zhang, Q. He, D. Xiao, M. Peng, Y. Zhao, H. Zhang, R. Luo, T. Gan, H. Ji, D. Ma, Cell Rep. Phys. Sci. 1(2020) 100004.
    [34]
    T. Xu, H. Zheng, P. Zhang, J. Hazard Mater. 388(2020) 121746.
    [35]
    H. Zhang, S. Sui, X. Zheng, R. Cao, P. Zhang, Appl. Catal. B Environ. 257(2019) 117878.
    [36]
    Z. Jiang, M. Jing, X. Feng, J. Xiong, C. He, M. Douthwaite, L. Zheng, W. Song, J. Liu, Z. Qu, Appl. Catal. B Environ. 278(2020) 119304.
    [37]
    P. Yang, S. Zuo, Z. Shi, F. Tao, R. Zhou, Appl. Catal. B Environ. 191(2016) 53-61.
    [38]
    J. Wan, P. Yang, X. Guo, R. Zhou, Chin. J. Catal. 40(2019) 1100-1108.
    [39]
    B. Kucharczyk, W. Tylus, J. Okal, J. Checmanowski, B. Szczygiel, Chem. Eng. J. 309(2017) 288-297.
    [40]
    T. Novakovic, N. Radic, B. Grbic, T. Marinova, P. Stefanov, D. Stoychev, Catal. Commun. 9(2008) 1111-1118.
    [41]
    Z. Chen, J. Mao, R. Zhou, Appl. Surf. Sci. 465(2019) 15-22.
    [42]
    A. Zhu, Y. Zhou, Y. Wang, Q. Zhu, H. Liu, Z. Zhang, H. Lu, J. Rare Earths 36(2018) 1272-1277.
    [43]
    B. Cen, T. Cen, J. Lu, J. Chen, M. Luo, Chin. J. Catal. 42(2021) 2287-2295.
    [44]
    S. Mo, J. Li, P. Peng, J. Li, J. Wu, M. Fu, L. Liao, T. Shen, Q. Xie, D. Ye, Chem. Eng. J. 418(2021) 129399.
    [45]
    J. He, F. Zheng, Y. Zhou, X. Li, Y. Wang, J. Xiao, Y. Li, D. Chen, J. Lu, J. Colloid Interface Sci. 613(2022) 155-167.
    [46]
    X. Zhang, Y. Liu, J. Deng, X. Yu, Z. Han, K. Zhang, H. Dai, Appl. Catal. B Environ. 257(2019) 117879.
    [47]
    S. Agarwal, J. Spivey, J. Butt, Appl. Catal. Gen. 82(1992) 259.
    [48]
    R. Brink, R. Louw, P. Mulder, Appl. Catal. B Environ. 25(2000) 229.
    [49]
    T. Wang, Q. Dai, F. Yan, J. Chem. Eng. 34(2017) 664-671.
    [50]
    Q. Dai, J. Wu, W. Deng, J. Hu, Q. Wu, L. Guo, W. Sun, W. Zhan, X. Wang, Appl. Catal. B Environ. 249(2019) 9-18.
    [51]
    J. Wan, P. Yang, X. Guo, R. Zhou, Mol. Catal. 470(2019) 75-81.
    [52]
    W. Deng, Q. Dai, Y. Lao, B. Shi, X. Wang, Appl. Catal. B Environ. 181(2016) 848-861.
    [53]
    J. Wang, X. Guo, Y. Shi, R. Zhou, J. Environ. Sci. 107(2021) 87-97.
    [54]
    Y. Xin, N. Zhang, Y. Lv, J. Wang, Q. Li, Z. Zhang, J. Rare Earths 38(2020) 850-862.
    [55]
    L. DeRita, S. Dai, K. Lopez-Zepeda, N. Pham, G. Graham, X. Pan, P. Christopher, J. Am. Chem. Soc. 139(2017) 14150-14165.
    [56]
    K. Ding, A. Gulec, A. Johnson, N. Schweitizer, G. Stucky, L. Mark, P. Stair, Science 350(2015) 189-192.
    [57]
    Z. Shi, P. Yang, F. Tao, R. Zhou, Chem. Eng. J. 295(2016) 99-108.
    [58]
    S. Mo, J. Li, R. Liao, P. Peng, J. Li, J. Wu, M. Fu, L. Liao, T. Shen, Q. Xie, D. Ye, Chem. Eng. J. 418(2021) 129399.
    [59]
    A. Stadnichenko, D. Svintsitskiy, L. Kibis, E. Fedorova, O. Stonkus, E. Slavinskaya, I. Lapin, E. Fakhrutdinova, V. Svetlichnyi, A. Romanenko, D. Doronkin, V. Marchuk, J. Grunwaldt, A. Boronin, Appl. Sci. 10(2020) 4699.
    [60]
    Y. Su, K. Fu, Y. Zheng, N. Ji, C. Song, D. Ma, X. Lu, R. Han, Q. Liu, Appl. Catal. B Environ. 288(2021) 119980.
    [61]
    J. Kim, K. Vikrant, T. Kim, K. Kim, F. Dong, Chem. Eng. J. 428(2022) 131090.
    [62]
    C. Chen, F. Chen, L. Zhang, S. Pan, C. Bian, X. Zheng, X. Meng, F. Xiao, Chem. Commun. 51(2015) 5936-5938.
    [63]
    Y. Yang, S. Zhao, L. Cui, F. Bi, Y. Zhang, N. Liu, Y. Wang, F. Liu, C. He, X. Zhang, Green Energy Environ. 8(2023) 654-672.
    [64]
    C. Zhang, H. He, K. Tanaka, Appl. Catal. B Environ. 203(2017) 31-42.
    [65]
    J. Ke, W. Zhu, Y. Jiang, R. Si, Y. Wang, S. Li, C. Jin, H. Liu, W. Song, C. Yan, Y. Zhang, ACS Catal. 5(2015) 5164-5173.
    [66]
    J. Ayastuy, M. Gonzalez-Marcos, A. Gil-Rodriguez, J. Gonzalez-Velasco, M. Gutierrez-Qrtiz, Catal. Today 116(2006) 391-399.
    [67]
    F. Passos, E. Oliveira, L. Mattos, F. Noronha, Catal. Today 101(2005) 23-30.
    [68]
    C. Vignatti, M. Avila, C. Apesteguia, T. Garetto, Catal. Today 171(2011) 297-303.
    [69]
    M. Luo, J. Chen, L. Chen, J. Lu, Z. Feng, C. Li, Chem. Mater. 13(2001) 197-202.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (294) PDF downloads(45) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return