Volume 8 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Qiuyan Jin, Liping Xiao, Weidong He, Hao Cui, Chengxin Wang. Self-supported metal (Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn-air batteries and switchable water electrolysis. Green Energy&Environment, 2023, 8(6): 1644-1653. doi: 10.1016/j.gee.2022.03.008
Citation: Qiuyan Jin, Liping Xiao, Weidong He, Hao Cui, Chengxin Wang. Self-supported metal (Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn-air batteries and switchable water electrolysis. Green Energy&Environment, 2023, 8(6): 1644-1653. doi: 10.1016/j.gee.2022.03.008

Self-supported metal (Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn-air batteries and switchable water electrolysis

doi: 10.1016/j.gee.2022.03.008
  • To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently needed but challenging. Herein, we report a simple route to fabricate bendable multifunctional electrodes by in-situ carbonization of metal ion absorbed polyaniline precursor. Alloy nanoparticles encapsulated in graphite layer are uniformly distributed in the N-doping carbon nanorod skeleton. Profiting from the favorable free-standing structure and the cooperative effect of metallic nanoparticles, graphitic layer and N doped-carbon architecture, the trifunctional electrodes exhibit prominent activities and stability toward HER, OER and ORR. Notably, due to the protection of carbon layer, the electrocatalysts show the reversible catalytic HER/OER properties. The overall water splitting device can continuously work for 12 h under frequent exchanges of cathode and anode. Importantly, the bendable metal air batteries fabricated by self-supported electrode not only displays the outstanding battery performance, achieving a decent peak power density (125 mW cm-2) and exhibiting favorable charge-discharge durability of 22 h, but also holds superb flexible stability. Specially, a lightweight self-driven water splitting unit is demonstrated with stable hydrogen production.

     

  • loading
  • [1]
    J. K. He, M. C. Wang, W. B. Wang, R. Miao, W. Zhong, S. Y. Chen, S. Poges, T. Jafari, W. Q. Song, J. C. Liu, S. L. Suib, ACS Appl. Mater. Interfaces, 9 (2017), pp. 42676-42687.
    [2]
    X. Liu, W. Liu, M. Ko, M. Park, M. G. Kim, P. Oh, S. Chae, S. Park, A. Casimir G. Wu, J. Cho, Adv. Funct. Mater., 25 (2015), pp. 5799-5808.
    [3]
    P. P. Yu, Z. M. Zhang, L. X. Zheng, F. Teng, L. F. Hu, X. S. Fang, Adv. Energy Mater., 6 (2016), 1601111.
    [4]
    Q. J. Niu, B. L. Chen, J. X. Guo, J. Nie, X. D. Guo, G. P. Ma, Nano-Micro Lett., 11 (2019), pp. 147-163.
    [5]
    Y. Arafat, M. R. Azhar, Y. J. Zhong, X. M. Xu, M. O. Tade, Z. Shao, Nano-Micro Lett., 12 (2020), 130.
    [6]
    M. Gong, W. Zhou, M. C. Tsai, J. G. Zhou, M. Y. Guan, M. C. Lin, B. Zhang, Y. F. Hu, D. Y. Wang, J. Yang, S. J. Pennycook, B. J. Hwang, H. J. Dai, Nat. Commun., 5 (2014), 4695.
    [7]
    M. D. Zhang, Q. B. Dai, H. G. Zheng, M. D. Chen, L. M. Dai, Adv. Mater. Interfaces, 30 (2018), 1705431.
    [8]
    Y. Nie, L. Li, Z. D. Wei, Chem. Soc. Rev., 44 (2015), pp. 2168-2201.
    [9]
    M. P. Marceta Kaninski, V. M. Nikoli, T. N. Potkonjak, B. R. Simonovi, N. A. I. Potkonjak, Appl. Catal. A-Gen, 321 (2007), pp. 93-99.
    [10]
    E. A. Paoli, F. Masini, R. Frydendal, D. Deiana, C. Schlaup, M. Malizia, T. W. Hansen, S. Horch, I. E. L. Stephens, I. Chorkendorff, Chem. Sci., 6 (2015), pp. 190-196.
    [11]
    T. Meng, Y. N. Hao, L. R. Zheng, M. H. Cao, Nanoscale, 10 (2018), pp. 14613-14626.
    [12]
    H. B. Yang, J. W. Miao, S. F. Hung, J. Z. Chen, H. B. Tao, X. Z. Wang, L. P. Zhang, R. Chen, J. J. Gao, H. M. Chen, L. M. Dai, B. Liu, Sci. Adv., 2 (2016), 1501122.
    [13]
    B. C. He, X. X. Chen, J. M. Lu, S. D. Yao, J. Wei, Q. Zhao, D. S. Jing, X. N. Huang, T. Wang, Electroanalysis, 28 (2016), pp. 2435-2443.
    [14]
    Q. Qin, P. Li, L. L. Chen, X. E. Liu, ACS Appl. Mater. Interfaces, 10 (2018), pp. 39828-39838.
    [15]
    S. G. Wang, J. W. Qin, T. Meng, M. H. Cao, Nano Energy, 39 (2017), pp. 626-638.
    [16]
    S. Gupta, L. Qiao, S. Zhao, H. Xu, Y. Lin, S. V. Devaguptapu, X. L. Wang, M. T. Swihart, G. Wu, Adv. Energy Mater., 6 (2016), 1601198.
    [17]
    Z. Wang, J. M. Ang, B. W. Zhang, Y. F. Zhang, X. Y. D. Ma, T. Yan, J. Liu, B. Y. Che, Y. Z. Huang, X. H. Lu, Appl. Catal. B-Environ., 254 (2019), pp. 26-36.
    [18]
    H. Y. Ge, G. D. Li, J. X. Shen, W. Q. Ma, X. G. Meng, L. Q. Xu, Appl. Catal. B-Environ., 275 (2020), 119104.
    [19]
    H. X. Zhong, J. Wang, Q. Zhang, F. L. Meng, D. Bao, T. Liu, X. Y. Yang, Z. W. Chang, J. M. Yan, X. B. Zhang, Adv. Sustain. Syst., 1 (2017), 1700020.
    [20]
    X. J. Cui, P. J. Ren, D. H. Deng, J. Deng, X. H. Bao, Energy Environ. Sci., 9 (2016), pp. 123-129.
    [21]
    K. Kordek, L. X. Jiang, K. C. Fan, Z. J. Zhu, L. Xu, M. Al-Mamun, Y. H. Dou, S. Chen, P. R. Liu, H. J. Yin, P. Rutkowski, H. J. Zhao, Adv. Energy Mater., 9 (2019), 1802936.
    [22]
    J. Fu, Z. P. Cano, M. G. Park, A. P. Yu, M. Fowler, Z. W. Chen, Adv. Mater., 29 (2017), 1604685.
    [23]
    X. Y. Lu, Q. R. Zhang, H. N. Yun, C. Zhao, EcoMat, 2 (2020), e12012.
    [24]
    Q. R. Zhang, N. M. Bedford, J. Pan, X. Y. Lu, R. Amal, Adv. Energy Mater., 9 (2019), 1901312.
    [25]
    G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science, 332 (2011), pp. 443-447.
    [26]
    Z. L. Wang, X. F. Hao, Z. Jiang, X. P. Sun, D. Xu, J. Wang, H. X. Zhong, F. L. Meng, X. B. Zhang, J. Am. Chem. Soc., 137 (2015), pp. 15070-15073.
    [27]
    S. Saha, A. K. Ganguli, ChemistrySelect, 2 (2017), pp. 1630-1636.
    [28]
    Z. Xie, W. Zhu, B. C. Zhu, C. R. Xia, Electrochim. Acta, 51 (2006), pp. 3052-3057.
    [29]
    M. Khalid, A. M. B. Honorato, G. Tremiliosi Filho, H. Varela, J. Mater. Chem. A, 8 (2020), pp. 9021-9031.
    [30]
    H. Khani, N. S. Grundish, D. O. Wipf and J. B. Goodenough, Adv. Energy Mater., 10 (2020), 1903215.
    [31]
    L. L. Zhang, J. Xiao, H. Y. Wang, M. H. Shao, ACS Catal., 7 (2017), pp. 7855-7865.
    [32]
    L. Hu, R. R. Zhang, L. Z. Wei, F. P. Zhang, Q. W. Chen, Nanoscale, 7 (2015), pp. 450-454.
    [33]
    L. Song, T. Wang, L. H. Li, C. Wu, J. P. He, Appl. Catal. B:Environ., 244 (2019), pp. 197-205.
    [34]
    J. S. Chen, H. Li, S. M. Chen, J. Y. Fei, C. Liu, Z. X. Yu, K. Shin, Z. W. Liu, L. Song, G. Henkelman, L. Wei, Y. Chen, Adv. Energy Mater., 11 (2021), 2003412.
    [35]
    A. F. Carley, S. D. Jackson, J. N. O'Shea, M. W. Roberts, Surf. Sci., 440 (1999), PP. L868-L874.
    [36]
    W. Xie, Y. Song, S. Li, J. Li, Y. Yang, W. Liu, M. Shao, M. Wei, Adv. Funct. Mater. 29 (2019) 1906477.
    [37]
    Q. Y. Jin, B. W. Ren, J. P. Chen, H. Cui, C. X. Wang, Appl. Catal. B-Environ., 256 (2019), 117887.
    [38]
    G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. G. Zhang, H. L. Wang, L. M. Dai, Nano Energy, 29 (2016), pp. 83-110.
    [39]
    R. Z. Zhang, C. M. Zhang, W. Chen, J. Mater. Chem. A, 4 (2016), pp. 18723-18729.
    [40]
    L. F. Lai, J. P. Potts, D. Zhan, L. Wang and C. K. Poh, C. H. Tang, H. Gong, Z. X. Shen, J. Y. Lin, R. S. Ruoff, Energy Environ. Sci., 5 (2012), pp. 7936-7942.
    [41]
    Y. Xu, W. G. Tu, B. W. Zhang, S. M. Yin, Y. Z. Huang, M. Kraft, R. Xu, Adv. Mater., 29 (2017), 1605957.
    [42]
    B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nature Energy, 1 (2016), 15006.
    [43]
    41. C. Tang, B. Wang, H. F. Wang, Q. Zhang, Adv. Mater., 29 (2017), 1703185.
    [44]
    Q. Shao, J. Q. Liu, Q. Wu, Q. Li, H. G. Wang, Y. H. Li, Q. Duan, Nano-Micro Lett., 11 (2019), pp. 64-77.
    [45]
    F. S. Zhang, J. W. Wang, J. Luo, R. R. Liu, Z. M. Zhang, C. T. He, T. B. Lu, Chem. Sci., 9 (2018), pp. 1375-1384.
    [46]
    L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc., 18 (2014), pp. 6744-6753.
    [47]
    W. Liu, H. Liu, L. Dang, H. Zhang, X. Wu, B. Yang, Z. Li, X. Zhang, L. Lei, S. Jin, Adv. Funct. Mater., 27 (2017), 1603904.
    [48]
    J. Geng, L. Kuai, E. Kan, Q.Wang, B. Geng, ChemSusChem., 8 (2015), pp. 659-664.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return