Pei Xiong, Peng He, Yixin Qu, Liguo Wang, Yan Cao, Shuang Xu, Jiaqiang Chen, Muhammad Ammar, Huiquan Li. The adsorption properties of NaY zeolite for separation of ethylene glycol and 1,2-butanediol: Experiment and molecular modelling. Green Energy&Environment, 2021, 6(1): 102-113. doi: 10.1016/j.gee.2019.12.006
Citation: Qiuyan Jin, Liping Xiao, Weidong He, Hao Cui, Chengxin Wang. Self-supported metal (Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn-air batteries and switchable water electrolysis. Green Energy&Environment, 2023, 8(6): 1644-1653. doi: 10.1016/j.gee.2022.03.008

Self-supported metal (Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn-air batteries and switchable water electrolysis

doi: 10.1016/j.gee.2022.03.008
  • To meet the practical demand of wearable/portable electronics, developing high-efficiency and durable multifunctional catalyst and in-situ assembling catalysts into electrodes with flexible features are urgently needed but challenging. Herein, we report a simple route to fabricate bendable multifunctional electrodes by in-situ carbonization of metal ion absorbed polyaniline precursor. Alloy nanoparticles encapsulated in graphite layer are uniformly distributed in the N-doping carbon nanorod skeleton. Profiting from the favorable free-standing structure and the cooperative effect of metallic nanoparticles, graphitic layer and N doped-carbon architecture, the trifunctional electrodes exhibit prominent activities and stability toward HER, OER and ORR. Notably, due to the protection of carbon layer, the electrocatalysts show the reversible catalytic HER/OER properties. The overall water splitting device can continuously work for 12 h under frequent exchanges of cathode and anode. Importantly, the bendable metal air batteries fabricated by self-supported electrode not only displays the outstanding battery performance, achieving a decent peak power density (125 mW cm-2) and exhibiting favorable charge-discharge durability of 22 h, but also holds superb flexible stability. Specially, a lightweight self-driven water splitting unit is demonstrated with stable hydrogen production.

     

  • [1]
    J. K. He, M. C. Wang, W. B. Wang, R. Miao, W. Zhong, S. Y. Chen, S. Poges, T. Jafari, W. Q. Song, J. C. Liu, S. L. Suib, ACS Appl. Mater. Interfaces, 9 (2017), pp. 42676-42687.
    [2]
    X. Liu, W. Liu, M. Ko, M. Park, M. G. Kim, P. Oh, S. Chae, S. Park, A. Casimir G. Wu, J. Cho, Adv. Funct. Mater., 25 (2015), pp. 5799-5808.
    [3]
    P. P. Yu, Z. M. Zhang, L. X. Zheng, F. Teng, L. F. Hu, X. S. Fang, Adv. Energy Mater., 6 (2016), 1601111.
    [4]
    Q. J. Niu, B. L. Chen, J. X. Guo, J. Nie, X. D. Guo, G. P. Ma, Nano-Micro Lett., 11 (2019), pp. 147-163.
    [5]
    Y. Arafat, M. R. Azhar, Y. J. Zhong, X. M. Xu, M. O. Tade, Z. Shao, Nano-Micro Lett., 12 (2020), 130.
    [6]
    M. Gong, W. Zhou, M. C. Tsai, J. G. Zhou, M. Y. Guan, M. C. Lin, B. Zhang, Y. F. Hu, D. Y. Wang, J. Yang, S. J. Pennycook, B. J. Hwang, H. J. Dai, Nat. Commun., 5 (2014), 4695.
    [7]
    M. D. Zhang, Q. B. Dai, H. G. Zheng, M. D. Chen, L. M. Dai, Adv. Mater. Interfaces, 30 (2018), 1705431.
    [8]
    Y. Nie, L. Li, Z. D. Wei, Chem. Soc. Rev., 44 (2015), pp. 2168-2201.
    [9]
    M. P. Marceta Kaninski, V. M. Nikoli, T. N. Potkonjak, B. R. Simonovi, N. A. I. Potkonjak, Appl. Catal. A-Gen, 321 (2007), pp. 93-99.
    [10]
    E. A. Paoli, F. Masini, R. Frydendal, D. Deiana, C. Schlaup, M. Malizia, T. W. Hansen, S. Horch, I. E. L. Stephens, I. Chorkendorff, Chem. Sci., 6 (2015), pp. 190-196.
    [11]
    T. Meng, Y. N. Hao, L. R. Zheng, M. H. Cao, Nanoscale, 10 (2018), pp. 14613-14626.
    [12]
    H. B. Yang, J. W. Miao, S. F. Hung, J. Z. Chen, H. B. Tao, X. Z. Wang, L. P. Zhang, R. Chen, J. J. Gao, H. M. Chen, L. M. Dai, B. Liu, Sci. Adv., 2 (2016), 1501122.
    [13]
    B. C. He, X. X. Chen, J. M. Lu, S. D. Yao, J. Wei, Q. Zhao, D. S. Jing, X. N. Huang, T. Wang, Electroanalysis, 28 (2016), pp. 2435-2443.
    [14]
    Q. Qin, P. Li, L. L. Chen, X. E. Liu, ACS Appl. Mater. Interfaces, 10 (2018), pp. 39828-39838.
    [15]
    S. G. Wang, J. W. Qin, T. Meng, M. H. Cao, Nano Energy, 39 (2017), pp. 626-638.
    [16]
    S. Gupta, L. Qiao, S. Zhao, H. Xu, Y. Lin, S. V. Devaguptapu, X. L. Wang, M. T. Swihart, G. Wu, Adv. Energy Mater., 6 (2016), 1601198.
    [17]
    Z. Wang, J. M. Ang, B. W. Zhang, Y. F. Zhang, X. Y. D. Ma, T. Yan, J. Liu, B. Y. Che, Y. Z. Huang, X. H. Lu, Appl. Catal. B-Environ., 254 (2019), pp. 26-36.
    [18]
    H. Y. Ge, G. D. Li, J. X. Shen, W. Q. Ma, X. G. Meng, L. Q. Xu, Appl. Catal. B-Environ., 275 (2020), 119104.
    [19]
    H. X. Zhong, J. Wang, Q. Zhang, F. L. Meng, D. Bao, T. Liu, X. Y. Yang, Z. W. Chang, J. M. Yan, X. B. Zhang, Adv. Sustain. Syst., 1 (2017), 1700020.
    [20]
    X. J. Cui, P. J. Ren, D. H. Deng, J. Deng, X. H. Bao, Energy Environ. Sci., 9 (2016), pp. 123-129.
    [21]
    K. Kordek, L. X. Jiang, K. C. Fan, Z. J. Zhu, L. Xu, M. Al-Mamun, Y. H. Dou, S. Chen, P. R. Liu, H. J. Yin, P. Rutkowski, H. J. Zhao, Adv. Energy Mater., 9 (2019), 1802936.
    [22]
    J. Fu, Z. P. Cano, M. G. Park, A. P. Yu, M. Fowler, Z. W. Chen, Adv. Mater., 29 (2017), 1604685.
    [23]
    X. Y. Lu, Q. R. Zhang, H. N. Yun, C. Zhao, EcoMat, 2 (2020), e12012.
    [24]
    Q. R. Zhang, N. M. Bedford, J. Pan, X. Y. Lu, R. Amal, Adv. Energy Mater., 9 (2019), 1901312.
    [25]
    G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science, 332 (2011), pp. 443-447.
    [26]
    Z. L. Wang, X. F. Hao, Z. Jiang, X. P. Sun, D. Xu, J. Wang, H. X. Zhong, F. L. Meng, X. B. Zhang, J. Am. Chem. Soc., 137 (2015), pp. 15070-15073.
    [27]
    S. Saha, A. K. Ganguli, ChemistrySelect, 2 (2017), pp. 1630-1636.
    [28]
    Z. Xie, W. Zhu, B. C. Zhu, C. R. Xia, Electrochim. Acta, 51 (2006), pp. 3052-3057.
    [29]
    M. Khalid, A. M. B. Honorato, G. Tremiliosi Filho, H. Varela, J. Mater. Chem. A, 8 (2020), pp. 9021-9031.
    [30]
    H. Khani, N. S. Grundish, D. O. Wipf and J. B. Goodenough, Adv. Energy Mater., 10 (2020), 1903215.
    [31]
    L. L. Zhang, J. Xiao, H. Y. Wang, M. H. Shao, ACS Catal., 7 (2017), pp. 7855-7865.
    [32]
    L. Hu, R. R. Zhang, L. Z. Wei, F. P. Zhang, Q. W. Chen, Nanoscale, 7 (2015), pp. 450-454.
    [33]
    L. Song, T. Wang, L. H. Li, C. Wu, J. P. He, Appl. Catal. B:Environ., 244 (2019), pp. 197-205.
    [34]
    J. S. Chen, H. Li, S. M. Chen, J. Y. Fei, C. Liu, Z. X. Yu, K. Shin, Z. W. Liu, L. Song, G. Henkelman, L. Wei, Y. Chen, Adv. Energy Mater., 11 (2021), 2003412.
    [35]
    A. F. Carley, S. D. Jackson, J. N. O'Shea, M. W. Roberts, Surf. Sci., 440 (1999), PP. L868-L874.
    [36]
    W. Xie, Y. Song, S. Li, J. Li, Y. Yang, W. Liu, M. Shao, M. Wei, Adv. Funct. Mater. 29 (2019) 1906477.
    [37]
    Q. Y. Jin, B. W. Ren, J. P. Chen, H. Cui, C. X. Wang, Appl. Catal. B-Environ., 256 (2019), 117887.
    [38]
    G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. G. Zhang, H. L. Wang, L. M. Dai, Nano Energy, 29 (2016), pp. 83-110.
    [39]
    R. Z. Zhang, C. M. Zhang, W. Chen, J. Mater. Chem. A, 4 (2016), pp. 18723-18729.
    [40]
    L. F. Lai, J. P. Potts, D. Zhan, L. Wang and C. K. Poh, C. H. Tang, H. Gong, Z. X. Shen, J. Y. Lin, R. S. Ruoff, Energy Environ. Sci., 5 (2012), pp. 7936-7942.
    [41]
    Y. Xu, W. G. Tu, B. W. Zhang, S. M. Yin, Y. Z. Huang, M. Kraft, R. Xu, Adv. Mater., 29 (2017), 1605957.
    [42]
    B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang, Nature Energy, 1 (2016), 15006.
    [43]
    41. C. Tang, B. Wang, H. F. Wang, Q. Zhang, Adv. Mater., 29 (2017), 1703185.
    [44]
    Q. Shao, J. Q. Liu, Q. Wu, Q. Li, H. G. Wang, Y. H. Li, Q. Duan, Nano-Micro Lett., 11 (2019), pp. 64-77.
    [45]
    F. S. Zhang, J. W. Wang, J. Luo, R. R. Liu, Z. M. Zhang, C. T. He, T. B. Lu, Chem. Sci., 9 (2018), pp. 1375-1384.
    [46]
    L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc., 18 (2014), pp. 6744-6753.
    [47]
    W. Liu, H. Liu, L. Dang, H. Zhang, X. Wu, B. Yang, Z. Li, X. Zhang, L. Lei, S. Jin, Adv. Funct. Mater., 27 (2017), 1603904.
    [48]
    J. Geng, L. Kuai, E. Kan, Q.Wang, B. Geng, ChemSusChem., 8 (2015), pp. 659-664.
  • Relative Articles

    [1]Jianran Ren, Zhiliang Zhu, Yanling Qiu, Fei Yu, Tao Zhou, Jie Ma, Jianfu Zhao. Simultaneous Adsorption-Reduction Boosted by In-situ Magnetic Field.  Green Energy&Environment. doi: 10.1016/j.gee.2024.04.006
    [2]Peng Zhang, Mingming He, Wei Teng, Fukuan Li, Xinyuan Qiu, Kexun Li, Hao Wang. Ordered mesoporous materials for water pollution treatment: Adsorption and catalysis.  Green Energy&Environment, 2024, 9(8): 1239-1256. doi: 10.1016/j.gee.2023.11.001
    [3]Xiao Yu, Shilin Fan, Bin Zhu, Soliman I. El-Hout, Jian Zhang, Chunlin Chen. Recent progress on photothermal nanomaterials: Design, mechanism, and applications.  Green Energy&Environment. doi: 10.1016/j.gee.2024.09.002
    [4]Yuan Yao, Haodan Cheng, Guocai Zhong, Xiaolong Tang, Honghong Yi, Shunzheng Zhao, Fengyu Gao, Qingjun Yu. Progress in the construction strategy of noble metal active sites for zeolite-based PNA and VOCs catalysts.  Green Energy&Environment. doi: 10.1016/j.gee.2024.06.001
    [5]Haoyang Zhang, Binyu Wang, Wenfu Yan. The structure-directing role of heterologous seeds in the synthesis of zeolite.  Green Energy&Environment, 2024, 9(5): 792-801. doi: 10.1016/j.gee.2023.02.005
    [6]Rui Li, Qixuan Lin, Junli Ren, Xiaobao Yang, Yingxiong Wang, Lingzhao Kong. Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid.  Green Energy&Environment, 2024, 9(2): 311-320. doi: 10.1016/j.gee.2022.06.003
    [7]Bin Yue, Jianhua Wang, Shanshan Liu, Guangjun Wu, Bin Qin, Landong Li. Efficient nitric oxide capture and reduction on Ni-loaded CHA zeolites.  Green Energy&Environment. doi: 10.1016/j.gee.2023.12.005
    [8]Risheng Bai, Yue Song, Ge Tian, Fei Wang, Avelino Corma, Jihong Yu. Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization.  Green Energy&Environment, 2023, 8(1): 163-172. doi: 10.1016/j.gee.2021.03.006
    [9]Peisong Yang, Gang Lu, Qingyuan Yang, Lei Liu, Xin Lai, Duli Yu. Analyzing acetylene adsorption of metal–organic frameworks based on machine learning.  Green Energy&Environment, 2022, 7(5): 1062-1070. doi: 10.1016/j.gee.2021.01.006
    [10]Wanggang Zhang, Yiming Liu, Zhiyuan Song, Changwan Zhuang, Aili Wei. The storage mechanism difference between amorphous and anatase as supercapacitors.  Green Energy&Environment, 2022, 7(1): 156-164. doi: 10.1016/j.gee.2020.10.004
    [11]Wei Chen, Mian Li, Wen-Li Peng, Ling Huang, Chao Zhao, Dinesh Acharya, Wentao Liu, Anmin Zheng. Covalent organic framework shows high isobutene adsorption selectivity from C4 hydrocarbons: Mechanism of interpenetration isomerism and pedal motion.  Green Energy&Environment, 2022, 7(2): 296-306. doi: 10.1016/j.gee.2020.09.016
    [12]Qing-Shan Kong, Xing-Long Li, Hong-Bo Shen, Hua-Jian Xu, Yao Fu. Na-MnOx catalyzed aerobic oxidative cleavage of biomass-derived 1,2-diols to synthesis medium-chain furanic chemicals.  Green Energy&Environment, 2022, 7(5): 957-964. doi: 10.1016/j.gee.2020.12.007
    [13]Zheng Zhang, Kai Chen, Qiang Zhao, Mei Huang, Xiaoping Ouyang. Comparative adsorption of heavy metal ions in wastewater on monolayer molybdenum disulfide.  Green Energy&Environment, 2021, 6(5): 751-758. doi: 10.1016/j.gee.2020.06.019
    [14]Shangqing Chen, Jiayin Hu, Guoliang Mi, Yafei Guo, Tianlong Deng. Novel montmorillonite-sulfur composite for enhancement of selective adsorption toward cesium.  Green Energy&Environment, 2021, 6(6): 893-902. doi: 10.1016/j.gee.2020.07.016
    [15]Ye Song, Bo Peng, Xue Yang, Qiuqiao Jiang, Jun Liu, Wei Lin. Trail of sulfur during the desulfurization via reactive adsorption on Ni/ZnO.  Green Energy&Environment, 2021, 6(4): 597-606. doi: 10.1016/j.gee.2020.05.010
    [16]Shiru Lin, Kaitlyn A. Jacoby, Jinxing Gu, Dariana R. Vega-Santander, Arturo J. Hernández-Maldonado, Zhongfang Chen. Zeolite-templated carbons as effective sorbents to remove methylsiloxanes and derivatives: A computational screening.  Green Energy&Environment, 2021, 6(6): 884-892. doi: 10.1016/j.gee.2020.07.007
    [17]Lei Liu, Binit Lukose, Pablo Jaque, Bernd Ensing. Reaction mechanism of hydrogen activation by frustrated Lewis pairs.  Green Energy&Environment, 2019, 4(1): 20-28. doi: 10.1016/j.gee.2018.06.001
    [18]Xingling Zhao, Kai Wu, Weiping Liao, Yingxiong Wang, Xiaoning Hou, Mingshan Jin, Zhanghuai Suo, Hui Ge. Improvement of low temperature activity and stability of Ni catalysts with addition of Pt for hydrogen production via steam reforming of ethylene glycol.  Green Energy&Environment, 2019, 4(3): 300-310. doi: 10.1016/j.gee.2018.11.002
    [19]Jacqueline González González, Mónica Nájera-Lara, Varinia López-Ramírez, Juan Antonio Ramírez-Vázquez, José J.N. Segoviano-Garfias. Spectrophotometric determination of the formation constants of Calcium(II) complexes with 1,2-ethylenediamine, 1,3-propanediamine and 1,4-butanediamine in acetonitrile.  Green Energy&Environment, 2017, 2(1): 51-57. doi: 10.1016/j.gee.2017.01.002
    [20]Xiaoxuan Wei, Ya Wang, Arturo J. Hernández-Maldonado, Zhongfang Chen. Guidelines for rational design of high-performance absorbents: A case study of zeolite adsorbents for emerging pollutants in water.  Green Energy&Environment, 2017, 2(4): 363-369. doi: 10.1016/j.gee.2017.05.002
  • Cited by

    Periodical cited type(14)

    1. Kim, K.J., Yoo, C.-Y., Park, J. et al. Zeolite-templated carbon synthesized with ion-exchanged FAU-zeolite using alkaline earth metal ions for the selective adsorption of C2 hydrocarbons over C1 hydrocarbon. Separation and Purification Technology, 2025. doi:10.1016/j.seppur.2024.129015
    2. Liang, J., Jiang, J., Cai, T. et al. Advances in selective conversion of carbohydrates into 5-hydroxymethylfurfural. Green Energy and Environment, 2024, 9(9): 1384-1406. doi:10.1016/j.gee.2023.11.005
    3. Hanh, N.T.D., Shih, J.-Y., Chen, K.-H. et al. Dynamic kinetic studies of CO2 capture using polyethyleneimine-modified cylindrical NaY zeolite in packed beds under ambient conditions. Journal of the Taiwan Institute of Chemical Engineers, 2024. doi:10.1016/j.jtice.2024.105366
    4. Zhang, L., Huang, S., Qiu, J. et al. Selective transformation of biomass-derived substrates to 1, 2-butanediol: A comprehensive review and new insights. Industrial Crops and Products, 2023. doi:10.1016/j.indcrop.2023.116984
    5. Wong, M.K., Lock, S.S.M., Chan, Y.H. et al. Towards sustainable production of bio-based ethylene glycol: Progress, perspective and challenges in catalytic conversion and purification. Chemical Engineering Journal, 2023. doi:10.1016/j.cej.2023.143699
    6. Wang, J., Shen, R., Cao, Y. et al. Separation of ethylene glycol, 1, 2-butanediol and 1, 2-propanediol with azeotropic distillation. Canadian Journal of Chemical Engineering, 2023, 101(7): 4217-4229. doi:10.1002/cjce.24771
    7. Dai, J., Feng, A., Mi, L. et al. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations | [NaY 沸石分子吸附涂层对典型空间污染物的吸附机制研究]. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, 38(10): 1237-1244. doi:10.15541/jim20230095
    8. Misturini, A., Rey, F., Sastre, G. Molecular Simulation of Biobutanol Recovery Using LTA and CHA Zeolite Nanosheets with an External Surface. Journal of Physical Chemistry C, 2022, 126(41): 17680-17691. doi:10.1021/acs.jpcc.2c04331
    9. Zhao, Y., Xu, C., Qi, Q. et al. Tailoring delicate pore environment of 2D Covalent organic frameworks for selective palladium recovery. Chemical Engineering Journal, 2022. doi:10.1016/j.cej.2022.136823
    10. Zhang, C., Wang, L., Han, Z. et al. Efficient hydrogenation of ethylene carbonate derived from CO2 to synthesize methanol and ethylene glycol over core-shell Cu@GO catalyst. Green Chemical Engineering, 2022, 3(3): 228-239. doi:10.1016/j.gce.2021.12.004
    11. Ma, Z., Xin, Z., Qin, S. et al. Highly Efficient Decarboxylation of L-Lysine to Cadaverine Catalyzed by RuO2 Encapsulated in FAU Zeolite. Catalysts, 2022, 12(7): 733. doi:10.3390/catal12070733
    12. Yi, F., He, P., Cao, J. et al. Study on adsorptive separation property of CaY zeolite for ethylene glycol and 1, 2-butanediol | [CaY分子筛对乙二醇和1, 2-丁二醇吸附分离性能的研究]. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2022, 22(4): 448-457. doi:10.12034/j.issn.1009-606X.221007
    13. Fang, Y., Wakisaka, M. A review on the modified atmosphere preservation of fruits and vegetables with cutting-edge technologies. Agriculture (Switzerland), 2021, 11(10): 992. doi:10.3390/agriculture11100992
    14. Moradi, H., Azizpour, H., Bahmanyar, H. et al. Effect of Si/Al Ratio in the Faujasite Structure on Adsorption of Methane and Nitrogen: A Molecular Dynamics Study. Chemical Engineering and Technology, 2021, 44(7): 1221-1226. doi:10.1002/ceat.202000356

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.5 %FULLTEXT: 27.5 %META: 69.8 %META: 69.8 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 0.9 %其他: 0.9 %China: 55.6 %China: 55.6 %France: 1.2 %France: 1.2 %India: 0.9 %India: 0.9 %Korea Republic of: 0.9 %Korea Republic of: 0.9 %United States: 40.4 %United States: 40.4 %其他ChinaFranceIndiaKorea Republic ofUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (226) PDF downloads(9) Cited by(17)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return