Volume 8 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Lu Chen, Junfeng Wang, Xiaojing Li, Jiayu Zhang, Chunran Zhao, Xin Hu, Hongjun Lin, Leihong Zhao, Ying Wu, Yiming He. Facile preparation of Ag2S/KTa0.5Nb0.5O3 heterojunction for enhanced performance in catalytic nitrogen fixation via photocatalysis and piezo-photocatalysis. Green Energy&Environment, 2023, 8(6): 1630-1643. doi: 10.1016/j.gee.2022.03.007
Citation: Lu Chen, Junfeng Wang, Xiaojing Li, Jiayu Zhang, Chunran Zhao, Xin Hu, Hongjun Lin, Leihong Zhao, Ying Wu, Yiming He. Facile preparation of Ag2S/KTa0.5Nb0.5O3 heterojunction for enhanced performance in catalytic nitrogen fixation via photocatalysis and piezo-photocatalysis. Green Energy&Environment, 2023, 8(6): 1630-1643. doi: 10.1016/j.gee.2022.03.007

Facile preparation of Ag2S/KTa0.5Nb0.5O3 heterojunction for enhanced performance in catalytic nitrogen fixation via photocatalysis and piezo-photocatalysis

doi: 10.1016/j.gee.2022.03.007
  • In this work, a novel heterojunction composite Ag2S/KTaxNb1-xO3 was designed and synthesized through a combination of hydrothermal and precipitation procedures. The Ta/Nb ratio of the KTaxNb1-xO3 and the Ag2S content were optimized. The best 0.5% Ag2S/KTa0.5Nb0.5O3 (KTN) sample presents an enhanced photocatalytic performance in ammonia synthesis than KTN and Ag2S. Under simulated sunlight, the NH3 generation rate of 0.5% Ag2S/KTN reaches 2.0 times that of pure KTN. Under visible light, the reaction rate ratio of the two catalysts is 6.0. XRD, XPS, and TEM analysis revealed that Ag2S was intimately decorated on the KTN nanocubes surface, which promoted the electron transfer between the two semiconductors. The band structure investigation indicated that the Ag2S/KTN heterojunction established a type-II band alignment with intimate contact, thus realizing the effective transfer and separation of photogenerated carriers. The change in charge separation was considered as the main reason for the enhanced photocatalytic performance. Interestingly, the Ag2S/KTN composite exhibited higher NH3 generation performance under the combined action of ultrasonic vibration and simulated sunlight. The enhanced piezo-photocatalytic performance can be ascribed that the piezoelectric effect of KTN improved the bulk separation of charge carriers in KTN. This study not only provides a potential catalyst for photocatalytic nitrogen fixation but also shows new ideas for the design of highly efficient catalysts via semiconductor modification and external field coupling.

     

  • loading
  • [1]
    G.N. Schrauzer, T.D. Guth, J. Am. Chem. Soc. 99 (1977) 7189-7193.
    [2]
    S.Z. Liu, S.B. Wang, Y. Jiang, Z.Q. Zhao, G.Y. Jiang, Z.Y. Sun, Chem. Eng. J. 373 (2019) 572-579.
    [3]
    Y. Bai, L.Q. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, ACS Appl. Mater. Interfaces 8 (2016) 27661-27668.
    [4]
    H.C. Xu, Y. Wang, X.L. Dong, N. Zheng, H.C. Ma, X.F. Zhang, Appl. Catal., B 257 (2019) 117932
    [5]
    Y.F. Zhao, Y.X. Zhao, G.I.N. Waterhouse, L.R. Zheng, X.Z. Cao, F. Teng, L.Z. Wu, C.H. Tung, D. O'Hare, T.R. Zhang, Adv. Mater. 29 (2017) 1703828
    [6]
    P.X. Xing, S.J. Wu, Y.J. Chen, P.F. Chen, X. Hu, H.J. Lin, L.H. Zhao, Y.M. He, ACS Sustain. Chem. Eng. 7 (2019) 12408-12418.
    [7]
    L. Chen, X. Q. Dai, X.J. Li, J.F. Wang, H.F. Chen, X. Hu, H.J. Lin, Y.M. He, Y. Wu, M.H. Fan, J. Mater. Chem. 9 (2021) 13344-13354.
    [8]
    Z.Q. Liang, X.F. Meng, Y.J. Xue, X.Y. Chen, Y.L. Zhou, X.L. Zhang, H.Z. Cui, J. Tian, J. Colloid Interface Sci. 598 (2021) 172-180.
    [9]
    Z. Li, G. Z. Gu, S.Z. Hu, X. Zou, G. Wu, Chin. J. Catal. 40 (2019) 1178-1186.
    [10]
    S.Y. Wang, X. Hai, X. Ding, K. Chang, Y.G. Xiang, X. G. Meng, Z.X. Yang, H. Chen, J.H. Ye, Adv. Mater. 29 (2017) 17017744.
    [11]
    B. Fang, Z.P. Xing, D.D. Sun, Z.Z. Li, W. Zhou, Adv. Powder Mater. 2021, doi: 10.1016/j.apmate.2021.11.008.
    [12]
    Q. Cheng, G.K. Zhang, Tungsten 2 (2020) 240-250.
    [13]
    Z.H. Ai, P. Yang, X.H. Lu, J. Hazard Mater. 124 (2005) 147-152.
    [14]
    L. Shi, X.Z. Wang, Y.W. Hu, Y.R. He, Sol. Energy 196 (2020) 505-512.
    [15]
    C.G. Joseph, G.L. Puma, A. Bono, D. Krishnaiah, Ultrason. Sonochem. 16 (2009) 583-589.
    [16]
    Y.C. Jia, M. Winkler, C. Cheng, F. Chen, L. Kirste, V. Cimalla, A. Zukauskaite, J. Szabados, I. Breunig, K. Buse, Opt. Mater. Express 8 (2018) 541-548.
    [17]
    A. Kumar, S.F. Yu, X.F. Li, Appl. Opt. 48 (2009) 6600-6605.
    [18]
    T.B. Wermuth, S. Arcaro, J. Venturini, T.M.H. Ribeiro, A.A.L. Rodriguez, E.L. Machado, T.F. Oliveira, S.E.F. Oliveira, M.N. Baibich, C.P. Bergmann, Ceram. Int. 45 (2019) 24137-24145.
    [19]
    Q.P. Ding, Y.P. Yuan, X. Xiong, R.P. Li, H.B. Huang, Z. S. Li, T. Yu, Z.G. Zou, S.G. Yang, J. Phys. Chem. C 112 (2008) 18846-18848.
    [20]
    Z.Q. Chen, P.F. Chen, P.X. Xing, X. Hu, H.J. Lin, Y. Wu, L.H. Zhao, Y.M. He, Fuel 233 (2018) 486-496.
    [21]
    K. Li, A.D. Handoko, M. Khraisheh, J.W. Tang, Nanoscale 6 (2014) 9767-9773.
    [22]
    P.X. Xing, W.Q. Zhang, L. Chen, X.Q. Dai, J.L. Zhang, L.H. Zhao, Y.M. He, Sustain. Energy Fuels 4 (2020) 1112-1117.
    [23]
    W.Q. Zhang, P.X. Xing, J.Y. Zhang, L. Chen, J.Y. Yang, X. Hu, L.H. Zhao, Y. Wu, Y.M. He, J. Colloid Interface Sci. 590 (2021) 548-560.
    [24]
    H.G. Sun, Z.X. Zhou, C.X. Yuan, W.L. Yang, H. Wang, Chin. Phys. Lett. 29 (2012) 017303.
    [25]
    H.G. Sun, Z.X. Zhou, Y.Q. Shen, C.X. Yuan, Comput. Mater. Sci. 50 (2010) 338-343.
    [26]
    D.F. Wang, T. Kako, J.H. Ye, J. Am. Chem. Soc. 130 (2008) 2724-2725.
    [27]
    Z.H. Li, Y.X. Wang, J.W. Liu, G. Chen, Y.X. Li, C. Zhou, Int. J. Hydrogen Energy 34 (2009) 147-152.
    [28]
    I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Am. Chem. Soc. 126 (2004) 13406-13413.
    [29]
    W.Y. Dong, Y.T. Liu, G.M. Zeng, S.Q. Zhang, T. Cai, J.L. Yuan, H. Chen, J. Gao, C.B. Liu, J. Colloid Interface Sci. 518 (2018) 156-164.
    [30]
    V. Lingwai, B.K. Bhadri, A.S. Kandari, N.S. Panwar, J. Inf. Comput. Sci. 12 (2019) 95-106.
    [31]
    D.F. Yu, Z.H. Liu, J.M. Zhang, S. Li, Z.C. Zhao, L.F. Zhu, W.S. Liu, Y.H. Lin, H. Liu, Z.T. Zhang, Nano Energy 58 (2019) 695-705.
    [32]
    H.L. You, X.X. Ma, Z. Wu, L.F. Fei, X.Q. Chen, J. Yang, Y.S. Liu, Y.M. Jia, H.M. Li, F.F. Wang, H.T. Huang, Nano Energy 52 (2018) 351-359.
    [33]
    B. Bajorowicz, E. Kowalska, J. Nadolna, Z.S. Wei, M. Endo, B. Ohtani, A. Zaleska-Medynska, Dalton Trans. 47 (2018) 15232-15245.
    [34]
    M.P. Rao, V.P. Nandhini, J.J. Wu, A. Syed, F. Ameen, S. Anandan, J. Solid State Chem. 258 (2018) 647-655.
    [35]
    W.L. Yang, L. Zhang, Y. Hu, Y.J. Zhong, H.B. Wu, X.W. Lou, Angew. Chem. 124 (2012) 11669-11672.
    [36]
    R. Ahmad, R. Srivastava, H. Bhardwaj, S. Yadav, V. Nand Singh, S. Chand, N. Singh, S. Sapra, ChemistrySelect 3 (2018) 5620-5629.
    [37]
    X. Wen, S. Wang, Y. Xie, X. Y. Li, S. Yang, J. Phys. Chem. B, 109 (2005) 10100-10106.
    [38]
    J.R. Ansari, N. Singh, S. Mohapatra, R. Ahmad, N.R. Saha, D. Chattopadhyay, M. Mukherjee, A. Datta, Appl. Surf. Sci. 463 (2019) 573-580.
    [39]
    Y. Xie, S.H. Heo, Y.N. Kim, S.H. Yoo, S.O. Cho, Nanotechnology 21 (2009) 015703.
    [40]
    Y. Yan, H. Yang, Z. Yi, T. Xian, R.S. Li, X.X. Wang, Desalination Water Treat. 170 (2019) 349-360.
    [41]
    Q.L. Zhang, P.F. Chen, L. Chen, M.F. Wu, X.Q. Dai, P.X. Xing, H.J. Lin, L.H. Zhao, Y.M. He, J. Colloid Interface Sci. 568 (2020) 117-129.
    [42]
    X. Li, D. Shen, C. Liu, J.Z. Li, Y.J. Zhou, X.H. Song, P.W. Huo, H.Q. Wang, Y.S. Yan, J. Colloid Interface Sci. 554 (2019) 468-478.
    [43]
    S. Khanchandani, P.K. Srivastava, S. Kumar, A.K. Ganguli, Inorg. Chem. 53 (2014) 8902-8912.
    [44]
    P.X. Xing, Z.Q. Chen, P.F. Chen, H.G. Lin, L.H. Zhao, Y. W, Y.M. He, J. Colloid Interface Sci. 552 (2019) 622-632
    [45]
    Y.Q. Shen, Z.X. Zhou, Comput. Mater. Sci. 65 (2012) 100-103.
    [46]
    T.J. Wang, J.H. Ye, Chem. Phys. Lett. 410 (2005) 104-107.
    [47]
    Y. X. Zhao, R. Shi, X. A. N. Bian, C. Zhou, Y. F. Zhao, S. Zhang, F. Wu, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. R. Zhang, Adv. Sci. 6 (2019) 1802109.
    [48]
    L. Chen, W. Q. Zhang, J. F. Wang, X. J. Li, Y. Li, X. Hu, L.H. Zhao, Y. Wu, Y. M. He, Green Energy Environ. 8 (2023) 283-295.
    [49]
    L.L. Zhang, L.X. Ding, G.F. Chen, X.F. Yang, H.H. Wang, Angew. Chem. Int. Ed. 58 (2019) 2612-2616.
    [50]
    S. Li, Z. C. Zhao, J. Z. Zhao, Z. T. Zhang, X. Li, J. M. Zhang, ACS Appl. Nano Mater. 3 (2020) 1063-1079.
    [51]
    J. Q. Lin, Y. Li, X. M. Liu, Y. S. Li, W. J. Zheng, W. L. Yang, RSC Adv. 10 (2020) 26256-26261.
    [52]
    M. Geravand, F. Jamali-Sheini, Adv. Powder Technol. 30 (2019) 347-358.
    [53]
    Y.M. Hu, H.S. Gu, D. Zhou, Z. Wang, H.L. Chan, Y. Wang, J. Am. Ceram. Soc. 93 (2010) 609-613.
    [54]
    A. Krukowska, G. Trykowski, M.J. Winiarsk, T. Klimczu, W. Lisowski, A. Mikolajczyk, H.P. Pinto, A. Zaleska-Medynska, Appl. Surf. Sci. 441 (2018) 993-1011.
    [55]
    J.X. Yu, Z.G. Chen, L. Zeng, Y.Y. Ma, Z. Feng, Y. Wu, H.J. Lin, L.H. Zhao, Y.M. He, Sol. Energy Mater. Sol. Cells 179 (2018) 45-56.
    [56]
    X.Q. Dai, L. Chen, Z.Y. Li, X.J. Li, J.F. Wang, X. Hu, L.H. Zhao, Y.M. Jia, X. Sun, Y. Wu, Y.M. He, J. Colloid Interface Sci. 603 (2021) 220-232.
    [57]
    B.W. He, C.B. Bie, X.G. Fei, B. Cheng, J.G. Yu, W. Ho, A.A. Al-Ghamdi, S. Wageh, Appl. Catal., B 288 (2021) 119994.
    [58]
    D.L. Jiang, L.L. Chen, J.M. Xie, M. Chen, Dalton Trans. 43 (2014) 4878-4885.
    [59]
    M. Mao, S.W. Zhao, Z.G. Chen, X.J. She, J.J. Yi, K.X. Xia, H. Xu, M.Q. He, H.M. Li, Green Energy Environ. 3 (2018) 229-238.
    [60]
    K. Feng, L. Zhang, J. Gong, J.P. Qu, R. Niu, Green Energy Environ. 8 (2023) 567-578.
    [61]
    Z.Q. Liang, Y.J. Xue, X.Y. Wang, Y.L. Zhou, X.L. Zhang, H.Z. Cui, G.Q. Cheng, J. Tian, Chem. Eng. J. 421 (2021) 130016.
    [62]
    K.L. Huang, C.H. Li, X.L. Zhang, L. Wang, W.T. Wang, X.C. Meng, Green Energy Environ. 8 (2023) 233-245.
    [63]
    X. Li, H.P. Jiang, C.C. Ma, Z. Zhu, X.H. Song, H.Q. Wang, P.W. Huo, X.Y. Li, Appl. Catal. B Environ. 283 (2021) 119638.
    [64]
    S.K. Yin, L.L. Sun, Y.J. Zhou, X. Li, J.Z. Li, X.H. Song, P.W. Huo, H.Q. Wang, Y.S. Yan, Chem. Eng. J. 406 (2021) 126776.
    [65]
    S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, ACS Catal. 2 (2012) 949-956.
    [66]
    R. Xiao, C.X. Zhao, Z.Y. Zou, Z.P. Chen, L. Tian, H.T. Xu, H. Tang, Q.Q. Liu, Z.X. Lin, X.F. Yang, Appl. Catal., B 268 (2020) 118382.
    [67]
    A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 124 (2002) 13547-13553.
    [68]
    M.Z. Xie, Z.M. Zhang, W.H. Han, X.W. Cheng, X.L. Li, E.Q. Xie, J. Mater. Chem. 5 (2017) 10338-10346.
    [69]
    Y. Hu, D.Z. Li, Y. Zheng, W. Chen, Y.H. He, Y. Shao, X.Z. Fu, G.C. Xiao, Appl. Catal., B 104 (2011) 30-36.
    [70]
    J. Wu, N. Qin, D. Bao, Nano Energy 45 (2018) 44-51.
    [71]
    Z.Y. Li, Q.L. Zhang, L. K. Wang, J.Y. Yang, Y. Wu, Y.M. He, Ultrason. Sonochem. 78 (2021) 105729.
    [72]
    S.F. Jia, Y.P. Su, B.P. Zhang, Z.C. Zhao, S. Li, Y.F. Zhang, P.C. Li, M.Y. Xu, R. Ren, Nanoscale 11 (2019) 7690.
    [73]
    L.K. Wang, J.F. Wang, C. Y. Ye, K.Q. Wang, C.R. Zhao, Y. Wu, Y.M. He, Ultrason. Sonochem. 80 (2021) 105813.
    [74]
    S.C. Tu, Y.X. Guo, Y.H. Zhang, C. Hu, T.R. Zhang, T.Y. Ma, H.W. Huang, Adv. Funct. Mater. 30 (2020) 2005158.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (361) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return