Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Kejia Wu, Minglong Cao, Qiang Zeng, Xuehui Li. Radical and (photo)electron transfer induced mechanisms for lignin photo-and electro-catalytic depolymerization. Green Energy&Environment, 2023, 8(2): 383-405. doi: 10.1016/j.gee.2022.02.011
Citation: Kejia Wu, Minglong Cao, Qiang Zeng, Xuehui Li. Radical and (photo)electron transfer induced mechanisms for lignin photo-and electro-catalytic depolymerization. Green Energy&Environment, 2023, 8(2): 383-405. doi: 10.1016/j.gee.2022.02.011

Radical and (photo)electron transfer induced mechanisms for lignin photo-and electro-catalytic depolymerization

doi: 10.1016/j.gee.2022.02.011
  • As one of the three major components of woody biomass, lignin is a kind of natural organic polymer and the only abundant natural renewable resource with aromatic nucleus. Chemical catalysis induced depolymerization is an important and effective approach for lignin utilization. In particular, photocatalysis and electrocatalysis show great potential in accurately activating C–O/C–C bonds, which is a critical point of selective cleavage of lignin. In this contribution, we focus on radical and (photo)electron transfer induced reaction mechanisms of the photo(electro)catalytic depolymerization of lignin. Primarily, the general situation of Carbon-centered radicals and active oxygen species mediated lignin conversion has been discussed. Then the mechanisms for (photo)electron transfer mediated lignin depolymerization have been summarized. At the end of this review, the challenges and opportunities of photo(electro)catalysis in the applications of lignin valorization have been forecasted.

     

  • loading
  • [1]
    T.E. Amidon; S. Liu, Biotechnology Advances 27 (2009) 542-550.
    [2]
    D. Carpenter; T.L. Westover; S. Czernik; W. Jablonski, Green Chemistry 16 (2014) 384-406.
    [3]
    B. Kamm; P.R. Gruber; M. Kamm, Biorefineries-industrial processes and products. Wiley-VCH Weinheim: 2006.
    [4]
    J. Zakzeski; P.C.A. Bruijnincx; A.L. Jongerius; B.M. Weckhuysen, Chemical Reviews 110 (2010) 3552-3599.
    [5]
    M. Li; Y. Pu; A.J. Ragauskas, Frontiers in Chemistry 4 (2016) 45.
    [6]
    S. Dabral; J. Engel; J. Mottweiler; S.S. Spoehrle; C.W. Lahive; C. Bolm, Green chemistry 20 (2018) 170-182.
    [7]
    G. Zhu; D. Jin; L. Zhao; X. Ouyang; C. Chen; X. Qiu, Fuel Processing Technology 161 (2017) 155-161.
    [8]
    L. Dong; L. Lin; X. Han; X. Si; X. Liu; Y. Guo; F. Lu; S. Rudic; S.F. Parker; S. Yang; Y. Wang, Chem 5 (2019) 1521-1536.
    [9]
    H. Guo; D.M. Miles-Barrett; A.R. Neal; T. Zhang; C. Li; N.J. Westwood, Chemical Science 9 (2018) 702-711.
    [10]
    L. Chen; J. Xin; L. Ni; H. Dong; D. Yan; X. Lu; S. Zhang, Green Chemistry 18 (2016) 2341-2352.
    [11]
    X. Shen; Q. Meng; Q. Mei; H. Liu; J. Yan; J. Song; D. Tan; B. Chen; Z. Zhang; G. Yang; B. Han, Chemical Science 11 (2020) 1347-1352.
    [12]
    Green Energy Environ
    [13]
    Y. Kang; X. Yao; Y. Yang; J. Xu; J. Xin; Q. Zhou; M. Li; X. Lu; S. Zhang, Green Chemistry 23 (2021) 5524-5534.
    [14]
    D. Duan; R. Ruan; Y. Wang; Y. Liu; L. Dai; Y. Zhao; Y. Zhou; Q. Wu, Bioresource Technology 251 (2018) 57-62.
    [15]
    S. Liu; L. Bai; A.P. Van Muyden; Z. Huang; X. Cui; Z. Fei; X. Li; X. Hu; P.J. Dyson, Green Chemistry 21 (2019) 1974-1981.
    [16]
    Z. Cai; J. Long; Y. Li; L. Ye; B. Yin; L.J. France; J. Dong; L. Zheng; H. He; S. Liu; S.C.E. Tsang; X. Li, Chem 5 (2019) 2365-2377.
    [17]
    L. Li; J. Kong; H. Zhang; S. Liu; Q. Zeng; Y. Zhang; H. Ma; H. He; J. Long; X. Li, Applied Catalysis B: Environmental (2020) 119343.
    [18]
    J. Long; W. Lou; L. Wang; B. Yin; X. Li, Chemical Engineering Science 122 (2015) 24-33.
    [19]
    J. Kong; L. Li; Q. Zeng; Z. Cai; Y. Wang; H. He; S. Liu; X. Li, Bioresource Technology 321 (2021) 124466.
    [20]
    Z. Xiang; W. Han; J. Deng; W. Zhu; Y. Zhang; H. Wang, ChemSusChem 13 (2020) 4199-4213.
    [21]
    X. Du; H. Zhang; K.P. Sullivan; P. Gogoi; Y. Deng, ChemSusChem 13 (2020) 4318-4343.
    [22]
    C. Yang; H. Chen; T. Peng; B. Liang; Y. Zhang; W. Zhao, Chinese Journal of Catalysis 42 (2021) 1831-1842.
    [23]
    C. Yang; S. Maldonado; C.R.J. Stephenson, ACS Catalysis 11 (2021) 10104-10114.
    [24]
    L.I. Granone; F. Sieland; N. Zheng; R. Dillert; D.W. Bahnemann, Green Chemistry 20 (2018) 1169-1192.
    [25]
    F.W.S. Lucas; R.G. Grim; S.A. Tacey; C.A. Downes; J. Hasse; A.M. Roman; C.A. Farberow; J.A. Schaidle; A. Holewinski, ACS Energy Letters (2021) 1205-1270.
    [26]
    Y.P. Wijaya; K.J. Smith; C.S. Kim; E.L. Gyenge, Green Chemistry 22 (2020) 7233-7264.
    [27]
    J. Zhang, ChemSusChem 11 (2018) 3071-3080.
    [28]
    G. Yang; Y. Jiao; H. Yan; C. Tian; H. Fu, Small Structures 2 (2021) 2100095.
    [29]
    C.W. Lahive; P.C.J. Kamer; C.S. Lancefield; P.J. Deuss, ChemSusChem 13 (2020) 4238-4265.
    [30]
    S. Kim; S.C. Chmely; M.R. Nimos; Y.J. Bomble; T.D. Foust; R.S. Paton; G.T. Beckham, Journal of Physical Chemistry Letters 2 (2011) 2846-2852.
    [31]
    H. Guo; D.M. Miles-Barrett; B. Zhang; A. Wang; T. Zhang; N.J. Westwood; C. Li, Green Chemistry 21 (2019) 803-811.
    [32]
    J. Luo; X. Zhang; J. Lu; J. Zhang, ACS Catalysis 7 (2017) 5062-5070.
    [33]
    C. Yang; G. Magallanes; S. Maldonado; C.R.J. Stephenson, The Journal of Organic Chemistry 86 (2021) 15927-15934.
    [34]
    G. Han; T. Yan; W. Zhang; Y.C. Zhang; D.Y. Lee; Z. Cao; Y. Sun, ACS Catalysis 9 (2019) 11341-11349.
    [35]
    C. Zhang; F. Wang, Chinese Journal of Catalysis 38 (2017) 1102-1107.
    [36]
    W.J. Ong; L.L. Tan; Y.H. Ng; S.T. Yong; S.P. Chai, Chemical Reviews 116 (2016) 7159-7329.
    [37]
    H. Liu; H. Li; J. Lu; S. Zeng; M. Wang; N. Luo; S. Xu; F. Wang, ACS Catalysis 8 (2018) 4761-4771.
    [38]
    T. Hou; N. Luo; H. Li; M. Heggen; J. Lu; Y. Wang; F. Wang, ACS Catalysis 7 (2017) 3850-3859.
    [39]
    Y. Kang; X. Lu; G. Zhang; X. Yao; J. Xin; S. Yang; Y. Yang; J. Xu; M. Feng; S. Zhang, ChemSusChem 12 (2019) 4005-4013.
    [40]
    L. Ma; H. Zhou; X. Kong; Z. Li; H. Duan, ACS Sustainable Chemistry & Engineering 9 (2021) 1932-1940.
    [41]
    H. Li; A. Bunrit; J. Lu; Z. Gao; N. Luo; H. Liu; F. Wang, ACS Catalysis 9 (2019) 8843-8851.
    [42]
    D. Shao; J. Liang; X. Cui; H. Xu; W. Yan, Chemical Engineering Journal 244 (2014) 288-295.
    [43]
    T. Shiraishi; T. Takano; H. Kamitakahara; F. Nakatsubo, Holzforschung 66 (2012) 303-309.
    [44]
    J. Chen; H. Yang; H. Fu; H. He; Q. Zeng; X. Li, Physical Chemistry Chemical Physics 22 (2020) 11508-11518.
    [45]
    J. Villasenor; N. Duran; H.D. Mansilla, Environ Technol 23 (2002) 955-959.
    [46]
    Y. Lu; X.Y. Wei; Z. Wen; H.B. Chen; Y.C. Lu; Z.M. Zong; J.P. Cao; S.C. Qi; S.Z. Wang; L.C. Yu; W. Zhao; X. Fan; Y.P. Zhao, Fuel Processing Technology 117 (2014) 8-16.
    [47]
    N. Srisasiwimon; S. Chuangchote; N. Laosiripojana; T. Sagawa, ACS Sustainable Chemistry & Engineering 6 (2018) 13968-13976.
    [48]
    S. Sharma; S. Kumar; S.M. Arumugam; S. Elumalai, Applied Catalysis A: General 602 (2020) 117730.
    [49]
    S. Kausar; A. Ali Altaf; M. Hamayun; M. Danish; M. Zubair; S. Naz; S. Muhammad; M. Zaheer; S. Ullah; A. Badshah, Inorganica Chimica Acta 502 (2020) 119390.
    [50]
    P. Tsapekos; M. Alvarado-Morales; D. Boscaro; M. Mazarji; L. Sartori; I. Angelidaki, Energy & Fuels 32 (2018) 6813-6822.
    [51]
    J. An; G. Zhang; R. Zheng; P. Wang, Journal of Environmental Sciences-China 48 (2016) 218-229.
    [52]
    S. Zhang; Z. Zhang; M. Ge; B. Liu; S. Chen; D. Zhang; L. Gao, GCB Bioenergy 13 (2021) 1290-1302.
    [53]
    L. Hou; D. Ji; W. Dong; L. Yuan; F. Zhang; Y. Li; L. Zang, Frontiers in Bioengineering and Biotechnology 8 (2020) 99.
    [54]
    L. Wang; Y. Chen; S. Liu; H. Jiang; L. Wang; Y. Sun; P. Wan, RSC Advances 7 (2017) 51419-51425.
    [55]
    Y.-S. Wang; F. Yang; Z.-H. Liu; L. Yuan; G. Li, Catalysis Communications 67 (2015) 49-53.
    [56]
    X. Hao; Y. Quansheng; S. Dan; Y. Honghui; L. Jidong; F. Jiangtao; Y. Wei, Journal of Hazardous Materials 286 (2015) 509-516.
    [57]
    D. Di Marino; T. Jestel; C. Marks; J. Viell; M. Blindert; S.M.A. Kriescher; A.C. Spiess; M. Wessling, ChemElectroChem 6 (2019) 1434-1442.
    [58]
    M. Mazarji; M. Alvarado-Morales; P. Tsapekos; G. Nabi-Bidhendi; N.M. Mahmoodi; I. Angelidaki, Environment International 125 (2019) 172-183.
    [59]
    X. Wang; W. Liu; X. Wang; D. Yu; H. Liu, Science of Advanced Materials 7 (2015) 479-488.
    [60]
    J. Chen; W. Liu; Z. Song; H. Wang; Y. Xie, BioEnergy Research 11 (2017) 166-173.
    [61]
    Y.M. Zhang; Y. Peng; X.L. Yin; Z.H. Liu; G. Li, Journal of Chemical Technology & Biotechnology 89 (2014) 1954-1960.
    [62]
    L. Wang; S. Liu; H. Jiang; Y. Chen; L. Wang; G. Duan; Y. Sun; Y. Chen; P. Wan, Journal of the Electrochemical Society 165 (2018) H705-H710.
    [63]
    Y.Y. Lin; S.Y. Lu, Journal of the Taiwan Institute of Chemical Engineers 97 (2019) 264-271.
    [64]
    J. Gong; A. Imbault; R. Farnood, Applied Catalysis B: Environmental 204 (2017) 296-303.
    [65]
    J. Xu; M. Li; L. Yang; J. Qiu; Q. Chen; X. Zhang; Y. Feng; J. Yao, Chemical Engineering Journal 394 (2020) 125050.
    [66]
    H. Jiang; L. Wang; L. Qiao; A. Xue; Y. Cheng; Y. Chen; Y. Ren; Y. Chen; P. Wan, International Journal of Electrochemical Science 14 (2019) 2645-2654.
    [67]
    T.K.F. Dier; D. Rauber; D. Durneata; R. Hempelmann; D.A. Volmer, Scientific Reports 7 (2017) 5041.
    [68]
    G. Liu; Q. Wang; D. Yan; Y. Zhang; C. Wang; S. Liang; L. Jiang; H. He, Green Chemistry 23 (2021) 1665-1677.
    [69]
    H. Zhu; L. Wang; Y. Chen; G. Li; H. Li; Y. Tang; P. Wan, RSC Advances 4 (2014) 29917-29924.
    [70]
    H. Jiang; Y. Cheng; Z. Wang; Z. Bai; Y. Tang; Y. Sun; P. Wan; Y. Chen, Journal of The Electrochemical Society 168 (2021) 016504.
    [71]
    J. Fang; P. Ye; M. Wang; D. Wu; A. Xu; X. Li, Catalysis Communications 107 (2018) 18-23.
    [72]
    H. Ma; H. Li; W. Zhao; L. Li; S. Liu; J. Long; X. Li, Green Chemistry 21 (2019) 658-668.
    [73]
    W. Zhao; X. Li; H. Li; X. Zheng; H. Ma; J. Long; X. Li, Acs Sustainable Chemistry & Engineering 7 (2019) 19750-19760.
    [74]
    H. Fang; W. Chen; S. Li; X. Li; X. Duan; L. Ye; Y. Yuan, Chemsuschem 12 (2019) 5199-5206.
    [75]
    H. Li; H. Ma; W. Zhao; X. Li; J. Long, Applied Energy 253 (2019) 113613.
    [76]
    N. Luo; M. Wang; H. Li; J. Zhang; H. Liu; F. Wang, ACS Catalysis 6 (2016) 7716-7721.
    [77]
    M. Ko; P. Le Thanh Mai; Y.J. Sa; J. Woo; N. Trang Vu Thien; J.H. Kim; D. Oh; P. Sharma; J. Ryu; T.J. Shin; S.H. Joo; Y.H. Kim; J.W. Jang, Nature Communications 10 (2019) 5123.
    [78]
    V.L. Pardini; C.Z. Smith; J.H.P. Utley; R.R. Vargas; H. Viertler, The Journal of Organic Chemistry 56 (1991) 7305-7313.
    [79]
    E. Reichert; R. Wintringer; D.A. Volmer; R. Hempelmann, Physical Chemistry Chemical Physics 14 (2012) 5214-5221.
    [80]
    J.D. Nguyen; B.S. Matsuura; C.R.J. Stephenson, Journal of the American Chemical Society 136 (2014) 1218-1221.
    [81]
    Z. Hao; S. Li; J. Sun; S. Li; F. Zhang, Applied Catalysis B: Environmental 237 (2018) 366-372.
    [82]
    S. Li; Z. Hao; K. Wang; M. Tong; Y. Yang; H. Jiang; Y. Xiao; F. Zhang, Chemical Communications (Camb) 56 (2020) 11243-11246.
    [83]
    D.W. Cho; R. Parthasarathi; A.S. Pimentel; G.D. Maestas; H.J. Park; U.C. Yoon; D. Dunaway-Mariano; S. Gnanakaran; P. Langan; P.S. Mariano, The Journal of Organic Chemistry 75 (2010) 6549-6562.
    [84]
    R.A. Binstead; B.A. Moyer; G.J. Samuels; T.J. Meyer, Journal of the American Chemical Society 103 (1981) 2897-2899.
    [85]
    Y.L. Wang; Y. Liu; J.H. He; Y.T. Zhang, Science Bulletin 64 (2019) 1658-1666.
    [86]
    S.T. Nguyen; P.R.D. Murray; R.R. Knowles, Acs Catalysis 10 (2020) 800-805.
    [87]
    I. Bosque; G. Magallanes; M. Rigoulet; M.D. Karkas; C.R.J. Stephenson, ACS central science 3 (2017) 621-628.
    [88]
    X. Wu; X. Fan; S. Xie; J. Lin; J. Cheng; Q. Zhang; L. Chen; Y. Wang, Nat. Catal. 1 (2018) 772-780.
    [89]
    X. Wu; S. Xie; C. Liu; C. Zhou; J. Lin; J. Kang; Q. Zhang; Z. Wang; Y. Wang, ACS Catalysis 9 (2019) 8443-8451.
    [90]
    J. Xu; M. Li; J.H. Qiu; X.F. Zhang; J.F. Yao, International Journal of Biological Macromolecules 180 (2021) 403-410.
    [91]
    H. Yoo; M.W. Lee; S. Lee; J. Lee; S. Cho; H. Lee; H.G. Cha; H.S. Kim, ACS Catalysis 10 (2020) 8465-8475.
    [92]
    S.K. Hanson; R. Wu; L.a.P. Silks, Angewandte Chemie-International Edition 51 (2012) 3410-3413.
    [93]
    X. Liu; L. Yan; Y. Fu, Acta Chimica Sinica 75 (2017) 788-793.
    [94]
    H. Liu; H. Li; N. Luo; F. Wang, ACS Catalysis 10 (2019) 632-643.
    [95]
    S. Gazi; W.K. Hung Ng; R. Ganguly; A.M. Putra Moeljadi; H. Hirao; H.S. Soo, Chemical Science 6 (2015) 7130-7142.
    [96]
    L.F. Zhai; M.-F. Duan; H.Y. Guo; F. Zhang; M. Sun, ACS Sustainable Chemistry & Engineering 7 (2019) 18414-18420.
    [97]
    B. Bawareth; D. Di Marino; T.A. Nijhuis; M. Wessling, ACS Sustainable Chemistry & Engineering 6 (2018) 7565-7573.
    [98]
    D.A. Giannakoudakis; D. Lomot; J.C. Colmenares, Green Chemistry 22 (2020) 4896-4905.
    [99]
    D. Wang; S.H. Lee; S. Han; J. Kim; N.V.T. Trang; K. Kim; E.-G. Choi; P. Boonmongkolras; Y.W. Lee; B. Shin; Y.H. Kim; C.B. Park, Green Chemistry 22 (2020) 5151-5160.
    [100]
    B.E. Rittmann, Water Research 132 (2018) 135-145.
    [101]
    P. Li; T. Zhang; M.A. Mushtaq; S. Wu; X. Xiang; D. Yan, The Chemical Record 21 (2021) 841-857.
    [102]
    H. Rajput; E.E. Kwon; S.A. Younis; S. Weon; T.H. Jeon; W. Choi; K.-H. Kim, Chemical Engineering Journal 412 (2021) 128612.
    [103]
    S. Ye; Y. Chen; X. Yao; J. Zhang, Chemosphere 273 (2021) 128503.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (236) PDF downloads(35) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return