Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Jiamiao Ran, Hui Liu, Hongliang Dong, Peng Gao, Haowei Cheng, Jianing Xu, Hailun Wang, Zixing Wang, Qingfeng Fu, Jiaxu Yan, Jilei Liu. Accurate quantification of TiO2(B)'s phase purity via Raman spectroscopy. Green Energy&Environment, 2023, 8(5): 1371-1379. doi: 10.1016/j.gee.2022.02.008
Citation: Jiamiao Ran, Hui Liu, Hongliang Dong, Peng Gao, Haowei Cheng, Jianing Xu, Hailun Wang, Zixing Wang, Qingfeng Fu, Jiaxu Yan, Jilei Liu. Accurate quantification of TiO2(B)'s phase purity via Raman spectroscopy. Green Energy&Environment, 2023, 8(5): 1371-1379. doi: 10.1016/j.gee.2022.02.008

Accurate quantification of TiO2(B)'s phase purity via Raman spectroscopy

doi: 10.1016/j.gee.2022.02.008
  • Bronze phase titanium dioxide (TiO2(B)) could be a promising high-power anode for lithium ion battery. However, TiO2(B) is a metastable material, so the as-synthesized samples are inevitably accompanied by the existence of anatase phases. It has been found that the TiO2(B)'s purity is positively correlated with its electrochemical performance. Herein, we have established an accurate quantification of the TiO2(B)/anatase ratio, by figuring out the function between the purity of TiO2(B) phase in the high purity range and its Raman spectra features in combination of the calibration by the synchrotron radiation X-ray diffraction (XRD). Compared with the time-consuming electrochemical method, the rapid, sensitive and non-destructive features of Raman spectroscopy have made it a promising candidate for determining the purity of TiO2(B). Further, the correlations developed in this work should be instructive in synthesizing pure TiO2(B) and furthermore optimizing its electrochemical charge storage properties.

     

  • loading
  • [1]
    A. Dalton, A. Belak, A. Ven, Chem. Mater. 24 (2012) 1568-1574.
    [2]
    A.G. Dylla, G. Henkelman, K.J. Stevenson, Acc. Chem. Res. 46 (2013) 1104-1112.
    [3]
    X. Hua, Z. Liu, M.G. Fischer, O. Borkiewicz, P.J. Chupas, K.W. Chapman, U. Steiner, P.G. Bruce, C.P. Grey, J. Am. Chem. Soc. 139 (2017) 13330-13341.
    [4]
    M. Wilkening, C. Lyness, A.R. Armstrong, P.G. Bruce, J. Phys. Chem. C 113 (2009) 4741-4744.
    [5]
    X. Yu, X. Zhang, Y. Lai, D. Wang, Y. Liu, Green Energy Environ. (2020) https://doi.org/10.1016/j.gee.2020.10.018.
    [6]
    X. Meng, Y. Xu, H. Cao, X. Lin, P. Ning, Y. Zhang, Y.G. Garcia, Z. Sun, Green Energy Environ. 5 (2020) 22-36.
    [7]
    T. Beuvier, M. Richard-Plouet, M. Mancini-Le Granvalet, T. Brousse, O. Crosnier, L. Brohan, Inorg. Chem. 49 (2010) 8457-8464.
    [8]
    H. Hu, L. Yu, X. Gao, Z. Lin, X.W. Lou, Energy Environ. Sci. 8 (2015) 1480-1483.
    [9]
    X. Li, G. Wu, X. Liu, W. Li, M. Li, Nano Energy 31 (2017) 1-8.
    [10]
    Y. Liu, M. Guo, Z. Liu, Q. Wei, M. Wei, J. Mater. Chem. A 6 (2018) 1196-1200.
    [11]
    C.W. Mason, I. Yeo, K. Saravanan, P. Balaya, RSC Adv. 3 (2013) 2935-2941.
    [12]
    M. Fehse, E. Ventosa, ChemPlusChem 80 (2015) 785-795.
    [13]
    D.P. Opra, S.V. Gnedenkov, S.L. Sinebryukhov, J. Power Sources 442 (2019) 227225.
    [14]
    H. Wei, E.F. Rodriguez, A.F. Hollenkamp, A.I. Bhatt, D. Chen, R.A. Caruso, Adv. Funct. Mater. 27 (2017) 1703270.
    [15]
    W. Zhuang, L. Lu, W. Li, R. An, X. Feng, X. Wu, Y. Zhu, X. Lu, Chin. J. Chem. Eng. 23 (2015) 583-589.
    [16]
    T. Beuvier, M. Richard-Plouet, J. Phys. Chem. C 113 (2009) 13703-13706.
    [17]
    J. Nieto, J. Freer, D. Contreras, R.J. Candal, E.E. Sileo, H.D. Mansilla, J. Hazard. Mater. 155 (2008) 45-50.
    [18]
    M. Shui, Y. Song, Q. Wang, Y. Ren, Curr Appl Phys 10 (2010) 1360-1365.
    [19]
    G. Armstrong, A.R. Armstrong, P.G. Bruce, P. Reale, B. Scrosati, Adv. Mater. 18 (2006) 2597-2600.
    [20]
    Z. Hong, K. Zhou, J. Zhang, Z. Huang, M. Wei, J. Mater. Chem. A 3 (2015) 17412-17416.
    [21]
    B. Zachau-Christiansen, K. West, T. Jacobsen, S. Atlung, Solid State Ionics 28-30 (1988) 1176-1182.
    [22]
    M. Zukalova, M. Kalbac, L. Kavan, I. Exnar, A. Haeger, M. Graetzel, Prog. Solid State Chem. 33 (2005) 253-261.
    [23]
    Z. Liu, Y.G. Andreev, A. Robert Armstrong, S. Brutti, Y. Ren, P.G. Bruce, Prog. Nat. Sci. 23 (2013) 235-244.
    [24]
    K. Kneipp, H. Kneipp, Chem. Rev. 99 (1999) 2957.
    [25]
    R.L. Mccreery, Meas. Sci. Technol. 12 (2001) 653-654.
    [26]
    X. Meng, L. Qiu, G. Xi, X. Wang, L. Guo, SmartMat 2 (2021) 466-487.
    [27]
    J. Lu, C. Ke, Z. Gong, D. Li, L. Ci, L. Zhang, Q. Zhang, Acta Phys. Sin. 70 (2021) 198102-198101.
    [28]
    C. T. Kniess, J. C. de, and P. B. Prates, The Quantification of Crystalline Phases in Materials: Applications of Rietveld Method, IntechOpen, London, 2012.
    [29]
    A. De La Torre, A. Cabeza, E. Losilla, M. Aranda, Zeitschrift fur Kristallographie Supplements 23 (2006) 587-592.
    [30]
    P. Gao, R.J. Koch, A.C. Ladonis, S.T. Misture, J. Electrochem. Soc. 167 (2020) 160523.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (164) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return