Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Zhuoya Wang, Kaihang Zhang, Bing Zhang, Zheming Tong, Shulan Mao, Hao Bai, Yingying Lu. Ultrafast battery heat dissipation enabled by highly ordered and interconnected hexagonal boron nitride thermal conductive composites. Green Energy&Environment, 2022, 7(6): 1401-1410. doi: 10.1016/j.gee.2022.02.007
Citation: Zhuoya Wang, Kaihang Zhang, Bing Zhang, Zheming Tong, Shulan Mao, Hao Bai, Yingying Lu. Ultrafast battery heat dissipation enabled by highly ordered and interconnected hexagonal boron nitride thermal conductive composites. Green Energy&Environment, 2022, 7(6): 1401-1410. doi: 10.1016/j.gee.2022.02.007

Ultrafast battery heat dissipation enabled by highly ordered and interconnected hexagonal boron nitride thermal conductive composites

doi: 10.1016/j.gee.2022.02.007
  • Heat dissipation involved safety issues are crucial for industrial applications of the high-energy density battery and fast charging technology. While traditional air or liquid cooling methods suffering from space limitation and possible leakage of electricity during charge process, emerging phase change materials as solid cooling media are of growing interest. Among them, paraffin wax (PW) with large latent heat capacity and low cost is desirable for heat dissipation and thermal management which mainly hindered by their relatively low thermal conductivity and susceptibility to leakage. Here, highly ordered and interconnected hexagonal boron nitride (h-BN) networks were established via ice template method and introduced into PW to enhance the thermal conductivity. The composite with 20 wt% loading amount of h-BN can guarantee a highly ordered network and exhibited high thermal conductivity (1.86 W m-1 K-1) which was 4 times larger compared with that of random dispersed h-BN involved PW and nearly 8 times larger compared with that of bare PW. The optimal thermal conductive composites demonstrated ultrafast heat dissipation as well as leakage resistance for lithium-ion batteries (LIBs), heat generated by LIBs can be effectively transferred under the working state and the surface temperature kept 6.9 °C lower at most under 2–5 °C continuous charge-discharge process compared with that of bare one which illustrated great potential for industrial thermal management.

     

  • loading
  • [1]
    H.T. Luk, C. Mondelli, D.C. Ferre, J.A. Stewart, J. Perez-Ramirez, Chem. Soc. Rev. 46 (2017) 1358–1426.
    [2]
    D. Xu, M.Y. Ding, X.L. Hong, G.L. Liu, S.C.E. Tsang, ACS Catal. 10 (2020) 5250–5260.
    [3]
    M. Gupta, M.L. Smith, J.J. Spivey, ACS Catal. 1 (2011) 641–656.
    [4]
    J.C. Kang, S. He, W. Zhou, Z. Shen, Y.Y. Li, M.S. Chen, Q.H. Zhang, Y. Wang, Nat. Commun. 827 (2020) 1–11.
    [5]
    M. Ao, G.H. Pham, J. Sunarso, M.O. Tade, S.M. Liu, ACS Catal. 8 (2018) 7025–7050.
    [6]
    K.J. Smith, R.B. Anderson, J. Catal. 85 (1984) 428–436.
    [7]
    M. Xu, E. Iglesia, J. Catal. 188 (1999) 125–131.
    [8]
    J. Sun, Q.X. Cai, Y. Wan, S.L. Wan, L. Wang, J.D. Lin, D.H. Mei, Y. Wang, ACS Catal. 6 (2016) 5771–5785.
    [9]
    S.Y. Cheng, Z.H. Gao, J.W. Kou, Y. Liu, W. Huang, Energ. Fuel. 31 (2017) 8572–8579.
    [10]
    S.H. Hu, X.Y. Liu, C.R. Wang, Pedro H.C. Camargo, J.L. Wang, ACS Appl. Mater. Interfaces 11 (2019) 17444–17451.
    [11]
    S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34 (2012) 1946–1953.
    [12]
    F.L. Liao, Z.Y. Zeng, C. Eley, Q. Lu, X.L. Hong, S.C.E. Tsang, Angew. Chem. Int. Ed. 51 (2012) 5832–5836.
    [13]
    K.X. Deng, B. Hua, Q.Y. Lu, X.L. Hong, Catal. Commun. 100 (2017) 81–84.
    [14]
    X.M. Liu, G.Q. Lu, Z.F. Yan, J. Beltramini, Ind. Eng. Chem. Res. 42 (2003) 6518–6530.
    [15]
    S. Polarz, J. Strunk, V. Ischenko, M.W.E. van den Berg, O. Hinrichsen, M. Muhler, M. Driess, Angew. Chem. Int. Ed. 45 (2006) 2965–2969.
    [16]
    M. Kurtz, J. Strunk, O. Hinrichsen, M. Muhler, K. Fink, B. Meyer, C. Wöll, Angew. Chem. Int. Ed. 44 (2005) 2790–2794.
    [17]
    W.S. Epling, G.B. Hoflund, D.M. Minahan, J. Catal. 175 (1998) 175–184.
    [18]
    T.W. He, G. Kour, X. Mao, A.J. Du, J. Catal. 382 (2020) 49–56.
    [19]
    A. Kumar, T.S. Herng, K.Y. Zeng, J. Ding, ACS Appl. Mater. Interfaces 4 (2012) 5276–5280.
    [20]
    M. Sajjad, I. Ullah, M.I. Khan, J. Khan, M.Y. Khan, M.T. Qureshi, Results Phys. 9 (2018) 1301–1309.
    [21]
    G.M. Schwab, Adv. Catal. 27 (1979) 1–22.
    [22]
    S. Anitha, S. Muthukumaran, Mat. Sci. Eng. C 108 (2020) 110387.
    [23]
    D.H. Xu, W.Z. Shen, J. Phys. Chem. C 116 (2012) 13368–13373.
    [24]
    M. Mittal, M. Sharma, O.P. Pandey, Sol. Energy 110 (2014) 386–397.
    [25]
    J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M.C. Álvarez Galván, R. Schlögl, M. Behrens, ACS Catal. 5 (2015) 3260–3270.
    [26]
    J.J. Wen, C.L. Huang, Y.H. Sun, L. Liang, Y.D. Zhang, Y.J. Zhang, M. Fu, J.L. Wu, L.M. Chen, D.Q. Ye, Catalysts 10 (2020) 533.
    [27]
    A.V. Kucherov, A.A. Slinkin, D.A. Kondrat'ev, T.N. Bondarenko, A.M. Rubinstein, Kh.M. Minachev, Zeolites 5 (1985) 320–324.
    [28]
    A.A. Slinkin, A.V. Kucherov, N.D. Chuvylkin, V.A. Korsunov, A.L. Kliachko, S.B. Nikishenko, J. Chem. Soc., Faraday Trans. 1 85 (1989) 3233–3243.
    [29]
    T. Yu, J. Wang, Y. Huang, M.Q. Shen, W. Li, J.Q. Wang, ChemCatChem 6 (2014) 2074–2083.
    [30]
    S. Fan, J.J. Xue, T. Yu, D.Q. Fan, T. Hao, M.Q. Shen, W. Li, Catal. Sci. Technol. 3 (2013) 2357–2364.
    [31]
    Th. Wolkenstein, Adv. Catal. 12 (1960) 189–264.
    [32]
    S. Albert, L. Philippe, Chem. Eng. J. 401 (2020) 126164.
    [33]
    A. Fkiri, S. Wiem, B. Sellami, M.A. Saidani, A. Khazri, L.S. Smiri, Environ. Technol. 15 (2019) 1–28.
    [34]
    S.H. Hsieh, J.M. Ting, Appl. Surf. Sci. 427 (2018) 465–475.
    [35]
    B. Mwankemwa, M.J. Legodi, M. Mlambo, J.M. Nel, M. Diale, Superlattices Microstruct. 107 (2017) 163–171.
    [36]
    D.C. Agarwal, U.B. Singh, S. Gupta, R. Singhal, P.K. Kulriya, F. Singh, A. Tripathi, J. Singh, U.S. Joshi, D.K. Avasthi, Sci. Rep. 9 (2019) 6675.
    [37]
    J.W. Kou, S.Y. Cheng, J.L. Bai, Fuel 255 (2019) 115833.
    [38]
    T. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, M.G. Willinger, Angew. Chem. Int. Ed. 54 (2015) 4544–4548.
    [39]
    S. Kuld, M. Thorhauge, H. Falsig, C.F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Science 352 (2016) 969–974.
    [40]
    M.B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens, R. Schlögl, M. Muhler, O. Hinrichsen, Angew. Chem. Int. Ed. 53 (2014) 7043–7047.
    [41]
    Y.F. Zhu, X.L. Pan, F. Jiao, J. Li, J.H. Yang, M.Z. Ding, Y. Han, Z. Liu, X.H. Bao, ACS Catal. 7 (2017) 2800–2804.
    [42]
    J. Liu, Y.J. Liu, W.J. Yan, D.H. Yang, J.C. Fan, W. Huang, Int. J. Hydrogen Energ. 45 (2020) 22469–22479.
    [43]
    H. Harold Kung, Catal. Rev. 22 (1980) 235–259.
    [44]
    J. Li, T. Yu, D.Y. Miao, X.l. Pan, X.H. Bao, Catal. Commun. 129 (2019) 105711.
    [45]
    F. Jiang, Y. Yang, L. Wang, Y.F. Li, Z.H. Fang, Y.B. Xu, B. Liu, X.H. Liu, Catal. Sci. Technol. 12 (2022) 551–564.
    [46]
    H.Y. Chen, S.P. Lau, L. Chen, J. Lin, C.H.A. Huan, K.L. Tan, J.S. Pan, Appl. Surf. Sci. 152 (1999) 193–199.
    [47]
    Y. Kanai, T. Watanabe, Catal. Lett. 27 (1994) 67–78.
    [48]
    M. Behrens, S. Zander, P. Kurr, N. Jacobsen, J. Senker, G. Koch, T. Ressler, R.W. Fischer, R. Schlögl, J. Am. Chem. Soc. 135 (2013) 6061–6068.
    [49]
    T. Fujitani, J. Nakamura, Catal. Lett. 56 (1998) 119–124.
    [50]
    L. Zhao, Y. Li, X.Z. Liu, K.G. Fang, Catal. Today 355 (2020) 17–25.
    [51]
    Z. An, X. Ning, J. He, J. Catal. 356 (2017) 157–164.
    [52]
    V.R. Surisettya, A.K. Dalaia, J. Kozinski, Appl. Catal. A-Gen. 393 (2011) 50–58.
    [53]
    Z.J. Zuo, L. Wang, L.M. Yu, P.D. Han, W. Huang, J. Phys. Chem. C 118 (2014) 12890–12898.
    [54]
    B. Bai, H. Bai, H.J. Cao, Z.H. Gao, Z.J. Zuo, W. Huang, Phys. Chem. Chem. Phys. 20 (2018) 12845–12857.
    [55]
    H. Bai, M.M. Ma, B. Bai, J.P. Zuo, H.J. Cao, L. Zhang, Q.F. Zhang, V.A. Vinokurov, W. Huang, J. Catal. 380 (2019) 68–82.
    [56]
    M. Maarouf, A. Al-Sunaidi, Comput. Theor. Chem. 1175 (2020) 112728.
    [57]
    H.V. Thang, G. Pacchioni, Phys. Chem. Chem. Phys. 21 (2018) 369–377.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (111) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return