Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Chenlong Dong, Xilin Zhang, Shaoning Zhang, Siwei Zhao, Xueyu Lin, Xin Wang, Yajing Zhang, Fuqiang Huang. Manipulating oxygenate adsorption on N-doped carbon by coupling with CoSn alloy for bifunctional oxygen electrocatalyst. Green Energy&Environment, 2023, 8(5): 1417-1428. doi: 10.1016/j.gee.2022.02.005
Citation: Chenlong Dong, Xilin Zhang, Shaoning Zhang, Siwei Zhao, Xueyu Lin, Xin Wang, Yajing Zhang, Fuqiang Huang. Manipulating oxygenate adsorption on N-doped carbon by coupling with CoSn alloy for bifunctional oxygen electrocatalyst. Green Energy&Environment, 2023, 8(5): 1417-1428. doi: 10.1016/j.gee.2022.02.005

Manipulating oxygenate adsorption on N-doped carbon by coupling with CoSn alloy for bifunctional oxygen electrocatalyst

doi: 10.1016/j.gee.2022.02.005
  • Highly active bifunctional oxygen electrocatalysts accelerate the development of high-performance Zn-air battery, but suffer from the mismatched activities of oxygen evolution reaction (OER) and oxygen reduced reaction (ORR). Herein, highly integrated bifunctional oxygen electrocatalysts, cobalt-tin alloys coated by nitrogen doped carbon (CoSn@NC) are prepared by MOFs-derived method. In this hybrid catalyst, the binary CoSn nanoalloys mainly contribute to highly active OER process while the Co (or Sn)−N−C serves as ORR active sites. Rational interaction between CoSn and NC donates more rapid reaction kinetics than Pt/C (ORR) and IrO2 (OER). Such CoSn@NC holds a promise as air-cathode electrocatalyst in Zn-air battery, superior to Pt/C + IrO2 catalyst. First-principles calculations predict that CoSn alloys can upgrade charge redistribution on NC and promote the transfer to reactants, thus optimizing the adsorption strength of oxygen-containing intermediates to boost the overall reactivity. The tuning of oxygenate adsorption by interactions between alloy and heteroatom-doped carbon can guide the design of bifunctional oxygen electrocatalysts.

     

  • loading
  • [1]
    H.-F. Wang, C. Tang, B. Wang, B.-Q. Li, Q. Zhang, Bifunctional transition metal hydroxysulfides: room-temperature sulfurization and their applications in Zn-air batteries, Adv. Mater. 29 (2017) 1702327, https://doi.org/10.1002/adma.201702327.
    [2]
    X. Zhu, T. Jin, C. Tian, C. Lu, X. Liu, M. Zeng, X. Zhuang, S. Yang, L. He, H. Liu, S. Dai, In situ coupling strategy for the preparation of FeCo alloys and Co4N hybrid for highly efficient oxygen evolution, Adv. Mater. 29 (2017) 1704091, https://doi.org/10.1002/adma.201704091.
    [3]
    A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide, A.J.R. Botz, R.A. Fischer, W. Schuhmann, M. Muhler, Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode, Angew. Chem. Int. Ed. 55 (2016) 4087-4091, https://doi.org/10.1002/anie.201509382.
    [4]
    N.R. Chodankar, S.-H. Ji, Y.-K. Han, D.-H. Kim, Dendritic nanostructured waste copper wires for high-energy alkaline battery, Nano-Micro Lett. 12 (2019) 1, https://doi.org/10.1007/s40820-019-0337-2.
    [5]
    Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu, Y. Xie, A Bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene, Angew. Chem. Int. Ed. 56 (2017) 7121-7125, https://doi.org/10.1002/anie.201702430.
    [6]
    X. Han, W. Zhang, X. Ma, C. Zhong, N. Zhao, W. Hu, Y. Deng, Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution, Adv. Mater. 31 (2019) 1808281, https://doi.org/10.1002/adma.201808281.
    [7]
    J. Song, S. Qiu, F. Hu, Y. Ding, S. Han, L. Li, H.-Y. Chen, X. Han, C. Sun, S. Peng, Sub-2 nm thiophosphate nanosheets with heteroatom doping for enhanced oxygen electrocatalysis, Adv. Funct. Mater. 31 (2021) 2100618, https://doi.org/10.1002/adfm.202100618.
    [8]
    M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature 486 (2012) 43-51, https://doi.org/10.1038/nature11115.
    [9]
    C.-Y. Su, H. Cheng, W. Li, Z.-Q. Liu, N. Li, Z. Hou, F.-Q. Bai, H.-X. Zhang, T.-Y. Ma, Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery, Adv. Energy Mater. 7 (2017) 1602420, https://doi.org/10.1002/aenm.201602420.
    [10]
    C. Tang, B. Wang, H.-F. Wang, Q. Zhang, Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries, Adv. Mater. 29 (2017) 1703185, https://doi.org/10.1002/adma.201703185.
    [11]
    W. Zang, A. Sumboja, Y. Ma, H. Zhang, Y. Wu, S. Wu, H. Wu, Z. Liu, C. Guan, J. Wang, S.J. Pennycook, Single Co atoms anchored in porous N-doped carbon for efficient zinc−air battery cathodes, ACS Catal. 8 (2018) 8961-8969, https://doi.org/10.1021/acscatal.8b02556.
    [12]
    Q. Lu, H. Wu, X. Zheng, Y. Chen, A.L. Rogach, X. Han, Y. Deng, W. Hu, Encapsulating cobalt nanoparticles in interconnected N-doped hollow carbon nanofibers with enriched Co-N-C moiety for enhanced oxygen electrocatalysis in Zn-air batteries, Adv. Sci. n/a (2021) 2101438, https://doi.org/10.1002/advs.202101438.
    [13]
    A. Wang, C. Zhao, M. Yu, W. Wang, Trifunctional Co nanoparticle confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime, Applied Catalysis B: Environmental 281 (2021) 119514, https://doi.org/10.1016/j.apcatb.2020.119514.
    [14]
    M. Reda, H.A. Hansen, T. Vegge, DFT study of the oxygen reduction reaction on carbon-coated iron and iron carbide, ACS Catal. 8 (2018) 10521-10529, https://doi.org/10.1021/acscatal.8b02167.
    [15]
    H. Lei, Z. Wang, F. Yang, X. Huang, J. Liu, Y. Liang, J. Xie, M.S. Javed, X. Lu, S. Tan, W. Mai, NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries, Nano Energy 68 (2020) 104293, https://doi.org/10.1016/j.nanoen.2019.104293.
    [16]
    H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X.W. Lou, Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix, Adv. Mater. 31 (2019) 1904548, https://doi.org/10.1002/adma.201904548.
    [17]
    X. Zhang, Z. Yang, Z. Lu, W. Wang, Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation, Carbon 130 (2018) 112-119, https://doi.org/10.1016/j.carbon.2017.12.121.
    [18]
    Z. Zhao, M. Li, L. Zhang, L. Dai, Z. Xia, Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries, Adv. Mater. 27 (2015) 6834-6840, https://doi.org/10.1002/adma.201503211.
    [19]
    M. Reda, H.A. Hansen, T. Vegge, DFT study of stabilization effects on N-doped graphene for ORR catalysis, Catal. Today 312 (2018) 118-125, https://doi.org/10.1016/j.cattod.2018.02.015.
    [20]
    Y. Okamoto, First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon, Appl. Surf. Sci. 256 (2009) 335-341, https://doi.org/10.1016/j.apsusc.2009.08.027.
    [21]
    F. Luo, A. Roy, L. Silvioli, D.A. Cullen, A. Zitolo, M.T. Sougrati, I.C. Oguz, T. Mineva, D. Teschner, S. Wagner, J. Wen, F. Dionigi, U.I. Kramm, J. Rossmeisl, F. Jaouen, P. Strasser, P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction, Nat. Mater. 19 (2020) 1215-1223, https://doi.org/10.1038/s41563-020-0717-5.
    [22]
    X. Zhang, J. Liu, Y. Qiao, A. Kong, R. Li, Y. Shan, Fe-boosting Sn-based dual-shell nanostructures from new covalent porphyrin frameworks as efficient electrocatalysts for oxygen reduction and zinc-air batteries, Electrochim. Acta 320 (2019) 134593, https://doi.org/10.1016/j.electacta.2019.134593.
    [23]
    M. Chen, S. Lu, X.-Z. Fu, J.-L. Luo, Core-Shell structured NiFeSn@NiFe(Oxy)Hydroxide nanospheres from an electrochemical strategy for electrocatalytic oxygen evolution reaction, Adv. Sci. 7 (2020) 1903777, https://doi.org/10.1002/advs.201903777.
    [24]
    P.W. Menezes, C. Panda, S. Garai, C. Walter, A. Guiet, M. Driess, Structurally ordered intermetallic cobalt stannide nanocrystals for high-performance electrocatalytic overall water-splitting, Angew. Chem. Int. Ed. 57 (2018) 15237-15242, https://doi.org/10.1002/anie.201809787.
    [25]
    S. Cui, Y. Zhang, C. Xue, H. Tan, S. Fan, Y. Lu, X. Pan, Y. Liu, D. Cui, Electrodeposited cobalt stannide: a highly efficient oxygen evolution reaction catalyst, J. Electrochem. Soc. 168 (2021) 096505, http://doi.org/10.1149/1945-7111/ac23a1.
    [26]
    J. Jian, X. Kou, H. Wang, L. Chang, L. Zhang, S. Gao, Y. Xu, H. Yuan, Fascinating tin effects on the enhanced and large-current-density water splitting performance of Sn-Ni(OH)2, ACS Appl. Mater. Interfaces 13 (2021) 42861-42869, https://doi.org/10.1021/acsami.1c12005.
    [27]
    V. Mani, S. Anantharaj, S. Mishra, N. Kalaiselvi, S. Kundu, Iron hydroxyphosphate and Sn-incorporated iron hydroxyphosphate: efficient and stable electrocatalysts for oxygen evolution reaction, Catal. Sci. Technol. 7 (2017) 5092-5104, http://doi.org/10.1039/C7CY00515F.
    [28]
    H. Liu, S. Zhu, Z. Cui, Z. Li, S. Wu, Y. Liang, Boosting oxygen reduction catalysis with abundant single atom tin active sites in zinc-air battery, J. Power Sources 490 (2021) 229483, https://doi.org/10.1016/j.jpowsour.2021.229483.
    [29]
    C. Jeyabharathi, P. Venkateshkumar, J. Mathiyarasu, K.L.N. Phani, Platinum-tin bimetallic nanoparticles for methanol tolerant oxygen-reduction activity, Electrochim. Acta 54 (2008) 448-454, https://doi.org/10.1016/j.electacta.2008.07.053.
    [30]
    F. Han, W.-C. Li, C. Lei, B. He, K. Oshida, A.-H. Lu, Selective formation of carbon-coated, metastable amorphous ZnSnO3 nanocubes containing mesopores for use as high-capacity lithium-ion battery, Small 10 (2014) 2637-2644, https://doi.org/10.1002/smll.201400371.
    [31]
    L. Zhang, J.M.T.A. Fischer, Y. Jia, X. Yan, W. Xu, X. Wang, J. Chen, D. Yang, H. Liu, L. Zhuang, M. Hankel, D.J. Searles, K. Huang, S. Feng, C.L. Brown, X. Yao, Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction, J. Am. Chem. Soc. 140 (2018) 10757-10763, https://doi.org/10.1021/jacs.8b04647.
    [32]
    S. Li, Z. Lu, Z. Yang, X. Chu, The sensing mechanism of Pt-doped SnO2 surface toward CO: a first-principle study, Sensor. Actuat. B Chem. 202 (2014) 83-92, https://doi.org/10.1016/j.snb.2014.05.071.
    [33]
    I.C. Man, H.-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martinez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Noerskov, J. Rossmeisl, Universality in oxygen evolution electrocatalysis on oxide surfaces, ChemCatChem 3 (2011) 1159-1165, https://doi.org/10.1002/cctc.201000397.
    [34]
    S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C.-Y. Chiang, W. Zhou, J. Zhao, J. Qiu, Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution, Adv. Mater. 29 (2017) 1700874, https://doi.org/10.1002/adma.201700874.
    [35]
    J.K. Noerskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B 108 (2004) 17886-17892, https://doi.org/10.1021/jp047349j.
    [36]
    F. Cheng, W.-C. Li, J.-N. Zhu, W.-P. Zhang, A.-H. Lu, Designed synthesis of nitrogen-rich carbon wrapped Sn nanoparticles hybrid anode via in-situ growth of crystalline ZIF-8 on a binary metal oxide, Nano Energy 19 (2016) 486-494, https://doi.org/10.1016/j.nanoen.2015.10.033.
    [37]
    J. Qian, F. Sun, L. Qin, Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals, Mater. Lett. 82 (2012) 220-223, https://doi.org/10.1016/j.matlet.2012.05.077.
    [38]
    Z.-Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.-Z. Su, ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts, Adv. Mater. 28 (2016) 3777-3784, https://doi.org/10.1002/adma.201506197.
    [39]
    H. Ma, K. Teng, Y. Fu, Y. Song, Y. Wang, X. Dong, Synthesis of visible-light responsive Sn-SnO2/C photocatalyst by simple carbothermal reduction, Energy Environ. Sci. 4 (2011) 3067-3074, http://doi.org/10.1039/C1EE01095F.
    [40]
    W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, L.-J. Wan, Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/FeeC nanoparticles boost the activity of Fe-Nx, J. Am. Chem. Soc. 138 (2016) 3570-3578, https://doi.org/10.1021/jacs.6b00757.
    [41]
    Z. Lin, G. Waller, Y. Liu, M. Liu, C.-P. Wong, Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction, Adv. Energy Mater. 2 (2012) 884-888, https://doi.org/10.1002/aenm.201200038.
    [42]
    H. Wu, J. Geng, H. Ge, Z. Guo, Y. Wang, G. Zheng, Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts, Adv. Energy Mater. 6 (2016) 1600794, https://doi.org/10.1002/aenm.201600794.
    [43]
    K. Ai, Y. Liu, C. Ruan, L. Lu, G. Lu, Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts, Adv. Mater. 25 (2013) 998-1003, https://doi.org/10.1002/adma.201203923.
    [44]
    T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Sci. Rep. 5 (2015) 13801, https://doi.org/10.1038/srep13801.
    [45]
    J. Ren, M. Antonietti, T.-P. Fellinger, Efficient water splitting using a simple Ni/N/C paper electrocatalyst, Adv. Energy Mater. 5 (2015) 1401660, https://doi.org/10.1002/aenm.201401660.
    [46]
    T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Metal-organic framework derived hybrid Co3O4-Carbon porous nanowire arrays as reversible oxygen evolution electrodes, J. Am. Chem. Soc. 136 (2014) 13925-13931, https://doi.org/10.1021/ja5082553.
    [47]
    C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc. 135 (2013) 16977-16987, https://doi.org/10.1021/ja407115p.
    [48]
    H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis, ChemCatChem 2 (2010) 724-761, https://doi.org/10.1002/cctc.201000126.
    [49]
    M. Li, L. Zhang, Q. Xu, J. Niu, Z. Xia, N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: theoretical considerations, J. Catal. 314 (2014) 66-72, https://doi.org/10.1016/j.jcat.2014.03.011.
    [50]
    S. Zhou, N. Liu, Z. Wang, J. Zhao, Nitrogen-doped graphene on transition metal substrates as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions, ACS Appl. Mater. Interfaces 9 (2017) 22578-22587, https://doi.org/10.1021/acsami.7b05755.
    [51]
    J. Jiang, F. Sun, S. Zhou, W. Hu, H. Zhang, J. Dong, Z. Jiang, J. Zhao, J. Li, W. Yan, M. Wang, Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide, Nat. Commun. 9 (2018) 2885, https://doi.org/10.1038/s41467-018-05341-y.
    [52]
    G. Henkelman, A. Arnaldsson, H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density, Comp. Mater. Sci. 36 (2006) 354-360, https://doi.org/10.1016/j.commatsci.2005.04.010.
    [53]
    X. Han, X. Ling, D. Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng, W. Hu, Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution, Adv. Mater. 31 (2019) 1905622, https://doi.org/10.1002/adma.201905622.
    [54]
    D. Yu, Y. Ma, F. Hu, C.-C. Lin, L. Li, H.-Y. Chen, X. Han, S. Peng, Dual-Sites coordination engineering of single atom catalysts for flexible metal-air batteries, Adv. Energy Mater. 11 (2021) 2101242, https://doi.org/10.1002/aenm.202101242.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (161) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return