Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Qi Zhao, Christian Marcus Pedersen, Jiamin Wang, Rui Liu, Yuanli Zhang, Xiuyin Yan, Zhenzhou Zhang, Xianglin Hou, Yingxiong Wang. NMR diffusion analysis of catalytic conversion mixtures from lignocellulose biomass using PSYCHE-iDOSY. Green Energy&Environment, 2023, 8(5): 1409-1416. doi: 10.1016/j.gee.2022.02.003
Citation: Qi Zhao, Christian Marcus Pedersen, Jiamin Wang, Rui Liu, Yuanli Zhang, Xiuyin Yan, Zhenzhou Zhang, Xianglin Hou, Yingxiong Wang. NMR diffusion analysis of catalytic conversion mixtures from lignocellulose biomass using PSYCHE-iDOSY. Green Energy&Environment, 2023, 8(5): 1409-1416. doi: 10.1016/j.gee.2022.02.003

NMR diffusion analysis of catalytic conversion mixtures from lignocellulose biomass using PSYCHE-iDOSY

doi: 10.1016/j.gee.2022.02.003
  • The component analysis and structure characterization of complex mixtures of biomass conversion remain a challenging work. Hence, developing effective and easy to use techniques is necessary. Diffusion-ordered NMR spectroscopy (DOSY) is a non-selective and non-invasive method capable of achieving pseudo-separation and structure assignments of individual compounds from biomass mixtures by providing diffusion coefficients (D) of the components. However, the conventional 1H DOSY NMR is limited by crowded resonances when analyzing complex mixtures containing similar chemical structure resulting in similar coefficient. Herein we describe the application of an advanced diffusion NMR method, Pure Shift Yielded by CHirp Excitation DOSY (PSYCHE-iDOSY), which can record high-resolution signal diffusion spectra efficiently separating compounds in model and genuine mixture samples from cellulose, hemicellulose and lignin. Complicated sets of isomers (d-glucose/d-fructose/d-mannose and 1,2-/1,5-pentadiol), homologous compounds (ethylene glycol and 1,2-propylene glycol), model compounds of lignin, and a genuine reaction system (furfuryl alcohol hydrogenolysis with ring opening) were successfully separated in the diffusion dimension. The results show that the ultrahigh-resolution DOSY technique is capable of detecting and pseudo-separating the mixture components of C5/C6 sugar conversion products and its derivative hydrogenation/hydrogenolysis from lignocellulose biomass.

     

  • loading
  • [1]
    J. Szyszkowiak, P. Majewska, Tetrahedron: Asymmetry 25 (2014) 103-112.
    [2]
    L. Castanar, P. Moutzouri, T.M. Barbosa, C.F. Tormena, R. Rittner, A.R. Phillips, S.R. Coombes, M. Nilsson, G.A. Morris, Anal. Chem. 90 (2018) 5445-5450.
    [3]
    S.R. Chaudhari, Srinivasa, N. Suryaprakash, RSC Adv. 2 (2012) 8689-8692.
    [4]
    T.M. Barbosa, G.A. Morris, M. Nilsson, R. Rittner, C.F. Tormena, RSC Adv. 7 (2017) 34000-34004.
    [5]
    F. Hammerschmidf, Y.F. Li, Termhedm 50 (1994) 10253-10264.
    [6]
    S. Glanzer, K. Zangger, Chem. Eur. J. 20 (2014) 11171-11175.
    [7]
    D. Jeannerat, J. Furrer, Comb. Chem. High Throughput Screen. 15 (2012) 15-35.
    [8]
    K. Shi, C.M. Pedersen, H. Chang, J. Shi, Y. Wang, Y. Qiao, Magn. Reson. Lett. (2021) 100001.
    [9]
    G.F. Pauli, G. Joseph Ray, Anton Bzhelyansky, Birgit U. Jaki, Charlotte Corbett, Christina Szabo, Christoph Steinbeck, Dan Soerensen, Damien Jeannerat, Daneel Ferreira, David C. Lankin, James B. McAlpine, Jean-Nicolas Dumez, Jonathan Bisson, Krish Krishnamurthy, Matthias Niemitz, Michael A. Nelson, Patrick Giraudeau, Samuli-Petrus Korhonen, Stefan Kuhn, Toru Miura, Lucy Botros, ChemRxiv. Cambridge: Cambridge Open Engage (2021).
    [10]
    S. Huang, J. Gao, R. Wu, S. Li, Z. Bai, Angew. Chem. Int. Ed. 53 (2014) 11592-11595.
    [11]
    K.A. Heisel, J.J. Goto, V.V. Krishnan, Am. J. Anal. Chem. 3 (2012) 401-409.
    [12]
    S. Huang, R. Wu, Z. Bai, Y. Yang, S. Li, X. Dou, Magn. Reson. Chem. 52 (2014) 486-490.
    [13]
    P.S. Kevin F. Morris, And Charles S. Johnson, Anal. Chem. 66 (1994) 211-215.
    [14]
    P. Lameiras, J.M. Nuzillard, Anal. Chem. 88 (2016) 4508-4515.
    [15]
    C. Carrara, S. Caldarelli, J. Phys. Chem. C 116 (2012) 20030-20034.
    [16]
    R. Novoa-Carballal, E. Fernandez-Megia, C. Jimenez, R. Riguera, Nat. Prod. Rep. 28 (2011) 78-98.
    [17]
    A. Einstein, Ann. Phys. 322 (1905) 549-560.
    [18]
    W. Ge, J.H. Zhang, C.M. Pedersen, T. Zhao, F. Yue, C. Chen, P. Wang, Y. Wang, Y. Qiao, ACS Sustain. Chem. Eng. 4 (2016) 1193-1200.
    [19]
    L. Avram, Y. Cohen, Chem. Soc. Rev. 44 (2015) 586-602.
    [20]
    R. Cao, A. Nonaka, F. Komura, T. Matsui, Food Chem. 171 (2015) 8-12.
    [21]
    J.H. Lamm, P. Niermeier, A. Mix, J. Chmiel, B. Neumann, H.G. Stammler, N.W. Mitzel, Angew. Chem. Int. Ed. 53 (2014) 7938-7942.
    [22]
    D. Smejkalova Piccolo, Environ. Sci. Technol. 42 (2008) 8440-8445.
    [23]
    D. Li, Keresztes, I. Keresztes, R. Hopson, P.G. Williard, Accounts Chem. Res. 42 (2009) 270-280.
    [24]
    P. Liu, C.M. Pedersen, J. Zhang, R. Liu, Z. Zhang, X. Hou, Y. Wang, Green Energy Environ. 6 (2021) 261-270.
    [25]
    H. Ma, C.M. Pedersen, Q. Zhao, S. Jia, B. Yuan, X. Hou, Y. Wang, Magn. Reson. Lett. (2021) 100021.
    [26]
    A. Le Gresley, G. Broadberry, C. Robertson, J.-M.R. Peron, J. Robinson, S. O’leary, J. Anal. Appl. Pyrol. 140 (2019) 281-289.
    [27]
    X. Lin, H. Li, H. Zhan, S. Du, Y. Huang, Z. Chen, Chin. J. Magn. Reson. 36 (2019) 425-436.
    [28]
    Q. Zhou, J. Xiang, Y. Tang, J. Cui, N. Wu, Chin. J. Magn. Reson. 33 (2016) 502-513.
    [29]
    Q. Zhao, H. Ma, C.M. Pedersen, M. Dou, Y. Qiao, X. Hou, Y. Qi, Y. Wang, ACS Sustain. Chem. Eng. 9 (2021) 2456-2464.
    [30]
    Q. Zhao, Y. Liu, H. Ma, Y. Qiao, J. Chao, X. Hou, Y. Wang, Y. Wang, Anal. Chim. Acta 1110 (2020) 131-140.
    [31]
    L. Castanar, Magn. Reson. Chem. 55 (2017) 47-53.
    [32]
    L. Castanar, P. Nolis, A. Virgili, T. Parella, Chem. Eur. J. 19 (2013) 17283-17286.
    [33]
    L. Castanar, T. Parella, Magn. Reson. Chem. 53 (2015) 399-426.
    [34]
    M. Foroozandeh, L. Castanar, L.G. Martins, D. Sinnaeve, G.D. Poggetto, C.F. Tormena, R.W. Adams, G.A. Morris, M. Nilsson, Angew. Chem. Int. Ed. 55 (2016) 15579-15582.
    [35]
    M. Nilsson, G.A. Morris, Chem. Commun. (2007) 933-935.
    [36]
    L. Castanar, G.D. Poggetto, A.A. Colbourne, G.A. Morris, M. Nilsson, Magn. Reson. Chem. 56 (2018) 546-558.
    [37]
    N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Bioresour. Technol. 96 (2005) 673-686.
    [38]
    W. Hui, Y. Zhou, Y. Dong, Z. J. Cao, F.Q. He, M.Z. Cai, D.J. Tao, Green Energy Environ. 4 (2019) 49-55.
    [39]
    J. Zakzeski, Pieter C. A. Bruijnincx, Anna L. Jongerius, Bert M. Weckhuysen, Chem. Rev. 110 (2010) 3552-3599.
    [40]
    S. Yang, X. Lu, H. Yao, J. Xin, J. Xu, Y. Kang, Y. Yang, G. Cai, S. Zhang, Green Chem. 21 (2019) 597-605.
    [41]
    B. Han, Green Energy Environ. 4 (2019) 343-344.
    [42]
    L. Chen, Y. Zhu, H. Zheng, C. Zhang, B. Zhang, Y. Li, J. Chem. Technol. Biotechnol. 87 (2012) 112-122.
    [43]
    F. Guo, Z. Fang, T.J. Zhou, Bioresour. Technol. 112 (2012) 313-318.
    [44]
    I.K. Deyu Li, Russell Hopson, Paul G. Williard, Accounts Chem. Res. 42 (2008) 270-280.
    [45]
    Z. Lyu, F. Yue, X. Yan, J. Shan, D. Xiang, C.M. Pedersen, C. Li, Y. Wang, Y. Qiao, Fuel Process. Technol. 171 (2018) 117-123.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (184) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return