Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Dan Gao, Zhiling Luo, Changhong Liu, Shoushan Fan. A survey of hybrid energy devices based on supercapacitors. Green Energy&Environment, 2023, 8(4): 972-988. doi: 10.1016/j.gee.2022.02.002
Citation: Dan Gao, Zhiling Luo, Changhong Liu, Shoushan Fan. A survey of hybrid energy devices based on supercapacitors. Green Energy&Environment, 2023, 8(4): 972-988. doi: 10.1016/j.gee.2022.02.002

A survey of hybrid energy devices based on supercapacitors

doi: 10.1016/j.gee.2022.02.002
  • Developing multifunctional energy storage systems with high specific energy, high specific power and long cycling life has been the one of the most important research directions. Compared to batteries and traditional capacitors, supercapacitors possess more balanced performance with both high specific power and long cycle-life. Nevertheless, regular supercapacitors can only achieve energy storage without harvesting energy and the energy density is still not very high compared to batteries. Therefore, combining high specific energy and high specific power, long cycle-life and even fast self-charging into one cell has been a promising direction for future energy storage devices. The multifunctional hybrid supercapacitors like asymmetric supercapacitors, batteries/supercapacitors hybrid devices and self-charging hybrid supercapacitors have been widely studied recently. Carbon based electrodes are common materials used in all kinds of energy storage devices due to their fabulous electrical and mechanical properties. In this survey, the research progress of all kinds of hybrid supercapacitors using multiple effects and their working mechanisms are briefly reviewed. And their advantages and disadvantages are discussed. The hybrid supercapacitors have great application potential for portable electronics, wearable devices and implantable devices in the future.

     

  • loading
  • [1]
    B. E. Conway, J Electrochem. Soc. 138 (1991) 1539-1548.
    [2]
    C. S. Du and N. Pan, Nanotechnology 17 (2006) 5314-5318.
    [3]
    L. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38 (2009) 2520-2531.
    [4]
    Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, Science 332 (2011) 1537-1541.
    [5]
    S. L. Zhang and N. Pan, Adv. Energy. Mater. 5 (2015) 1401401.
    [6]
    R. Kotz and M. Carlen, Electrochim. Acta. 45 (2000) 2483-2498.
    [7]
    H. N. Wang and L. Pilon, J Phys. Chem. C 115 (2011) 16711-16719.
    [8]
    J. R. Miller and P. Simon, Science 321 (2008) 651-652.
    [9]
    P. Simon and Y. Gogotsi, Nat. Mater. 7 (2008) 845-854.
    [10]
    K. Jost, G. Dion and Y. Gogotsi, J Mater. Chem. A 2 (2014) 10776-10787.
    [11]
    C. M. Chuang, C. W. Huang, H. S. Teng and J. M. Ting, Energ. Fuel 24 (2010) 6476-6482.
    [12]
    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P. L. Taberna, Science 313 (2006) 1760-1763.
    [13]
    L. Miao, Z. Song, D. Zhu, L. Li, L. Gan, M. Liu, Materials Advances 1 (2020) 945-966.
    [14]
    M. Kaempgen, J. Ma, G. Gruner, G. Wee and S. G. Mhaisalkar, Appl. Phys. Lett. 90 (2007) 264104.
    [15]
    C. Z. Meng, C. H. Liu and S. S. Fan, Electrochem. Commun. 11 (2009) 186-189.
    [16]
    D. Gao, R. Liu, W. Yu, Z. Luo, C. Liu and S. Fan, The Journal of Physical Chemistry C 123 (2019) 5249-5254.
    [17]
    D. W. Wang, F. Li, J. P. Zhao, W. C. Ren, Z. G. Chen, J. Tan, Z. S. Wu, I. Gentle, G. Q. Lu and H. M. Cheng, ACS Nano 3 (2009) 1745-1752.
    [18]
    Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu and G. Q. Shi, ACS Nano 4 (2010) 1963-1970.
    [19]
    C. T. White and T. N. Todorov, Nature 393 (1998) 240-242.
    [20]
    C. T. White and T. N. Todorov, Nature 411 (2001) 649-651.
    [21]
    W. Z. Liang, J. L. Yang and J. Sun, Appl. Phys. Lett. 86 (2005) 223113.
    [22]
    S. Berber, Y. K. Kwon and D. Tomanek, Phys. Rev. Lett. 84 (2000) 4613-4616.
    [23]
    A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum and T. W. Ebbesen, Nature 388 (1997) 451-454.
    [24]
    Y. G. Wang and Y. Y. Xia, Electrochem. Commun. 7 (2005) 1138-1142.
    [25]
    Q. Wang, Z. H. Wen and J. H. Li, Adv Funct. Mater. 16 (2006) 2141-2146.
    [26]
    F. Zhang, T. F. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang and Y. S. Chen, Energ. Environ. Sci. 6 (2013) 1623-1632.
    [27]
    G. C. Li, G. R. Li, S. H. Ye and X. P. Gao, Adv Energy Mater. 2 (2012) 1238-1245.
    [28]
    P. A. Nelson and J. R. Owen, J Electrochem. Soc. 150 (2003) A1313-A1317.
    [29]
    D. Zhang, Y. L. Yin, C. H. Liu and S. S. Fan, Chem. Commun. 51 (2015) 322-325.
    [30]
    Y. L. Yin, C. H. Liu and S. S. Fan, RSC Adv. 4 (2014) 26378-26382.
    [31]
    V. Aravindan, J. Gnanaraj, Y. S. Lee and S. Madhavi, Chem. Rev. 114 (2014) 11619-11635.
    [32]
    V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu and P. M. Ajayan, P Natl. Acad. Sci. USA 104 (2007) 13574-13577.
    [33]
    L. T. Lam and R. Louey, J Power Sources 158 (2006) 1140-1148.
    [34]
    M. S. Park, Y. G. Lim, J. H. Kim, Y. J. Kim, J. Cho and J. S. Kim, Adv. Energy Mater. 1 (2011) 1002-1006.
    [35]
    F. X. Wang, S. Y. Xiao, Y. Y. Hou, C. L. Hu, L. L. Liu and Y. P. Wu, RSC Adv. 3 (2013) 13059-13084.
    [36]
    M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. L. Taberna, C. P. Grey, B. Dunn and P. Simon, Nature Energy 1 (2016) 16070.
    [37]
    J. F. Sun, C. Wu, X. F. Sun, H. Hu, C. Y. Zhi, L. R. Hou and C. Z. Yuan, J Mater. Chem. A 5 (2017) 9443-9464.
    [38]
    Y. L. Shao, M. F. El-Kady, J. Y. Sun, Y. G. Li, Q. H. Zhang, M. F. Zhu, H. Z. Wang, B. Dunn and R. B. Kaner, Chem. Rev. 118 (2018) 9233-9280.
    [39]
    M. Toupin, T. Brousse and D. Belanger, Chem. Mater. 16 (2004) 3184-3190.
    [40]
    M. F. Dupont and S. W. Donne, J Electrochem. Soc. 162 (2015) A5096-A5105.
    [41]
    T. M. Ou, C. T. Hsu and C. C. Hu, J Electrochem. Soc. 162 (2015) A5124-A5132.
    [42]
    X. Y. Lang, A. Hirata, T. Fujita and M. W. Chen, Nat. Nanotechnol. 6 (2011) 232-236.
    [43]
    H. C. Gao, F. Xiao, C. B. Ching and H. W. Duan, ACS Appl. Mater. Inter. 4 (2012) 2801-2810.
    [44]
    C. X. Guo, A. A. Chitre and X. M. Lu, Phys. Chem. Chem. Phys. 16 (2014) 4672-4678.
    [45]
    P. H. Yang, Y. Ding, Z. Y. Lin, Z. W. Chen, Y. Z. Li, P. F. Qiang, M. Ebrahimi, W. J. Mai, C. P. Wong and Z. L. Wang, Nano Lett. 14 (2014) 731-736.
    [46]
    A. Muzaffar, M. B. Ahamed, K. Deshmukh and J. Thirumalai, Renew. Sust. Energ. Rev. 101 (2019) 123-145.
    [47]
    A. Singh, A. J. Roberts, R. C. T. Slade and A. Chandra, J Mater. Chem. A 2 (2014) 16723-16730.
    [48]
    D. P. Dubal, O. Ayyad, V. Ruiz and P. Gomez-Romero, Chem. Soc. Rev. 44 (2015) 1777-1790.
    [49]
    W. H. Zuo, R. Z. Li, C. Zhou, Y. Y. Li, J. L. Xia and J. P. Liu, Adv. Sci. 4 (2017) 1600539.
    [50]
    L. Kouchachvili, W. Yaici and E. Entchev, J Power Sources 374 (2018) 237-248.
    [51]
    B. Culpin and D. A. J. Rand, J Power Sources 36 (1991) 415-438.
    [52]
    N. F. Yu and L. J. Gao, Electrochem. Commun. 11 (2009) 220-222.
    [53]
    M. Fernandez, J. Valenciano, F. Trinidad and N. Munoz, J Power Sources 195 (2010) 4458-4469.
    [54]
    R. Shapira, G. D. Nessim, T. Zimrin and D. Aurbach, Energ. Environ. Sci. 6 (2013) 587-594.
    [55]
    M. Saravanan, M. Ganesan and S. Ambalavanan, J Power Sources 251 (2014) 20-29.
    [56]
    N. F. Yu, L. J. Gao, S. H. Zhao and Z. D. Wang, Electrochim. Acta. 54 (2009) 3835-3841.
    [57]
    C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu and S. S. Fan, Nano Lett. 10 (2010) 4025-4031.
    [58]
    H. S. Chen, T. N. Cong, W. Yang, C. Q. Tan, Y. L. Li and Y. L. Ding, Prog. Nat. Sci-Mater. 19 (2009) 291-312.
    [59]
    A. Yoshino, Angew Chem. Int. Edit. 51 (2012) 5798-5800.
    [60]
    H. Gwon, J. Hong, H. Kim, D. H. Seo, S. Jeon and K. Kang, Energ. Environ. Sci. 7 (2014) 538-551.
    [61]
    X. Q. Meng, Y. L. Xu, H. B. Cao, X. Lin, P. G. Ning, Y. Zhang, Y. G. Garcia, Z. Sun, Green Energy Environ. 5 (2020) 22-36.
    [62]
    G. G. Amatucci, F. Badway, A. Du Pasquier and T. Zheng, J Electrochem. Soc. 148 (2001) A930-A939.
    [63]
    Q. Wang, T. Meng, Y. Li, J. Yang, B. Huang, S. Ou, C. Meng, S. Zhang, Y. Tong, Energy Storage Materials 39 (2021) 354-364.
    [64]
    H. Kim, M. Y. Cho, M. H. Kim, K. Y. Park, H. Gwon, Y. Lee, K. C. Roh and K. Kang, Adv. Energy Mater. 3 (2013) 1500-1506.
    [65]
    W. H. Zuo, C. Wang, Y. Y. Li and J. P. Liu, Sci. Rep-Uk. 5 (2015) 7780.
    [66]
    H. L. Wang, Z. W. Xu, Z. Li, K. Cui, J. Ding, A. Kohandehghan, X. H. Tan, B. Zahiri, B. C. Olsen, C. M. B. Holt and D. Mitlin, Nano Lett. 14 (2014) 1987-1994.
    [67]
    J. Zhang, Z. Q. Shi and C. Y. Wang, Electrochim. Acta. 125 (2014) 22-28.
    [68]
    S. R. Sivakkumar and A. G. Pandolfo, Electrochim. Acta. 65 (2012) 280-287.
    [69]
    T. Reddy, Linden's Handbook of Batteries, fourth ed., McGraw-Hill Companies, Inc., New York 2010.
    [70]
    R. Bhattacharyya, B. Key, H. L. Chen, A. S. Best, A. F. Hollenkamp and C. P. Grey, Nat. Mater. 9 (2010) 504-510.
    [71]
    A. M. Zardkhoshoui and S. S. H. Davarani, Sustain Energ. Fuels 5(2021) 900-913.
    [72]
    Y. L. Yin, C. H. Liu and S. S. Fan, Nano Energy 12 (2015) 486-493
    [73]
    Z. Tian, X. Tong, G. Sheng, Y. Shao, L. Yu, V. Tung, J. Sun, R. B. Kaner, Z. Liu, Nat. Commun. 10 (2019) 4913.
    [74]
    S. Maitra, R. Mitra, T. K. Nath, Journal of Nanoscience and Nanotechnology 10 (2021) 6217-6226.
    [75]
    Z. Song, L. Miao, L. Ruhlmann, Y. Lv, D. Zhu, L. Li, L. Gan, M. Liu, Adv. Mater. 33 (2021) e2104148.
    [76]
    X. Zheng, L. Miao, Z. Song, W. Du, D. Zhu, Y. Lv, L. Li, L. Gan, M. Liu, Journal of Materials Chemistry A 10 (2022) 611-621.
    [77]
    K. Li, Y. Shao, S. Liu, Q. Zhang, H. Wang, Y. Li, R. B. Kaner, Small 13 (2017) 1700380.
    [78]
    A. Shah, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, Science 285 (1999) 692-698.
    [79]
    F. Hao, H. Lin, Y. Z. Liu, N. Wang, W. D. Li and J. B. Li, ACS Appl. Mater. Inter. 3 (2011) 3916-3920.
    [80]
    R. H. Liu, C. H. Liu and S. S. Fan, J Mater. Chem. A 5 (2017) 23078-23084.
    [81]
    Y. Yang, K. C. Pradel, Q. S. Jing, J. M. Wu, F. Zhang, Y. S. Zhou, Y. Zhang and Z. L. Wang, ACS Nano 6 (2012) 6984-6989.
    [82]
    Z. L. Wang and J. H. Song, Science 312 (2006) 242-246.
    [83]
    J. Briscoe and S. Dunn, Nano Energy 14 (2015) 15-29.
    [84]
    T. L. Zhao, A. A. Bokov, J. G. Wu, H. L. Wang, C. M. Wang, Y. Yu, C. L. Wang, K. Y. Zeng, Z. G. Ye and S. X. Dong, Adv. Funct. Mater. 29 (2019) 1807902.
    [85]
    F. R. Fan, Z. Q. Tian and Z. L. Wang, Nano Energy 1 (2012) 328-334.
    [86]
    Y. H. Wu, J. K. Qu, W. A. Daoud, L. Y. Wang and T. Qi, J Mater. Chem. A 7 (2019) 13347-13355.
    [87]
    Z. Liu, H. Li, B. J. Shi, Y. B. Fan, Z. L. Wang and Z. Li, Adv. Funct. Mater. 29 (2019) 1808820.
    [88]
    W. Tang, B. D. Chen and Z. L. Wang, Adv Funct Mater. 29 (2019) 1901069.
    [89]
    G. H. Liu, T. Chen, J. L. Xu and K. Y. Wang, J Mater. Chem. A 6 (2018) 18357-18377.
    [90]
    Z. L. Wang, ACS Nano 7 (2013) 9533-9557.
    [91]
    F. R. Fan, J. J. Luo, W. Tang, C. Y. Li, C. P. Zhang, Z. Q. Tian and Z. L. Wang, J Mater. Chem. A 2 (2014) 13219-13225.
    [92]
    F. Xing, Y. Jie, X. Cao, T. Li and N. Wang, Nano Energy 42 (2017) 138-142.
    [93]
    J. J. Luo, F. R. Fan, T. Jiang, Z. W. Wang, W. Tang, C. P. Zhang, M. M. Liu, G. Z. Cao and Z. L. Wang, Nano Res. 8 (2015) 3934-3943.
    [94]
    Y. Song, X. L. Cheng, H. T. Chen, J. H. Huang, X. X. Chen, M. D. Han, Z. M. Su, B. Meng, Z. J. Song and H. X. Zhang, J Mater. Chem. A 4 (2016) 14298-14306.
    [95]
    J. D. Zou, M. Zhang, J. R. Huang, J. Bian, Y. Jie, M. Willander, X. Cao, N. Wang and Z. L. Wang, Adv. Energy. Mater. 8 (2018) 1702671.
    [96]
    B. K. Deka, A. Hazarika, S. Lee, D. Y. Kim, Y. B. Park and H. W. Park, Nano Energy 73 (2020) 104754.
    [97]
    Y. Y. Mao, Y. Li, J. Y. Xie, H. Liu, C. J. Guo and W. B. A. Hu, Nano Energy 84 (2021) 105918.
    [98]
    X. H. Ren, X. Y. Xiang, H. F. Yin, Y. Tang and H. D. Yuan, Nanotechnology 32 (2021) 315404.
    [99]
    X. Y. Xue, S. H. Wang, W. X. Guo, Y. Zhang and Z. L. Wang, Nano Lett. 12 (2012) 5048-5054.
    [100]
    X. Y. Xue, P. Deng, S. Yuan, Y. X. Nie, B. He, L. L. Xing and Y. Zhang, Energ Environ. Sci. 6 (2013) 2615-2620.
    [101]
    X. Y. Xue, P. Deng, B. He, Y. X. Nie, L. L. Xing, Y. Zhang and Z. L. Wang, Adv. Energy Mater. 4 (2014) 1301329.
    [102]
    D. Pankratov, P. Falkman, Z. Blum and S. Shleev, Energ. Environ. Sci. 7 (2014) 989-993.
    [103]
    A. Ramadoss, B. Saravanakumar, S. W. Lee, Y. S. Kim, S. J. Kim and Z. L. Wang, ACS Nano 9 (2015) 4337-4345.
    [104]
    E. P. Gilshteyn, D. Amanbaev, M. V. Silibin, A. Sysa, V. A. Kondrashov, A. S. Anisimov, T. Kallio and A. G. Nasibulin, Nanotechnology 29 (2018) 325501.
    [105]
    S. S. Qin, Q. Zhang, X. X. Yang, M. M. Liu, Q. J. Sun and Z. L. Wang, Adv. Energy. Mater. 8 (2018) 1800069.
    [106]
    D. Zhou, N. Wang, T. T. Yang, L. Wang, X. Cao and Z. L. Wang, Mater. Horiz. 7 (2020) 2158-2167.
    [107]
    Y. Lu, Y. Jiang, Z. Lou, R. L. Shi, D. Chen and G. Z. Shen, Prog. Nat. Sci-Mater. 30 (2020) 174-179.
    [108]
    R. B. Song, H. Y. Jin, X. Li, L. F. Fei, Y. D. Zhao, H. T. Huang, H. L. W. Chan, Y. Wang and Y. Chai, J Mater. Chem. A 3 (2015) 14963-14970.
    [109]
    F. Wang, C. M. Jiang, C. L. Tang, S. Bi, Q. H. Wang, D. F. Du and J. H. Song, Nano Energy 21 (2016) 209-216.
    [110]
    C. Yu, K. Choi, L. Yin and J. C. Grunlan, ACS Nano 5 (2011) 7885-7892.
    [111]
    D. Kim, Y. Kim, K. Choi, J. C. Grunlan and C. H. Yu, ACS Nano 4 (2010) 513-523.
    [112]
    O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren and X. Crispin, Nat. Mater. 10 (2011) 429-433.
    [113]
    D. Zhao, H. Wang, Z. U. Khan, J. C. Chen, R. Gabrielsson, M. P. Jonsson, M. Berggren and X. Crispin, Energ. Environ. Sci. 9 (2016) 1450-1457.
    [114]
    S. L. Kim, H. T. Lin and C. Yu, Adv. Energy. Mater. 6 (2016) 1600546.
    [115]
    S. L. Kim, J. H. Hsu and C. Yu, Nano Energy 48 (2018) 582-589.
    [116]
    A. Al-zubaidi, X. X. Ji and J. Yu, Sustain Energ. Fuels 1 (2017) 1457-1474.
    [117]
    M. Dalal, A Textbook of Physical Chemistry, (first ed). Ion Transport in Solutions, E-Publishing, Inc., New York, 2018, pp. 400-432.
    [118]
    M. K. Han, Y. Jin, D. H. Lee and S. J. Kim, Materials 10 (2017) 1235.
    [119]
    M. A. Green, Prog. Photovoltaics 9 (2001) 137-144.
    [120]
    J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature 499 (2013) 316-319.
    [121]
    K. G. Lim, H. B. Kim, J. Jeong, H. Kim, J. Y. Kim and T. W. Lee, Adv. Mater. 26 (2014) 6461-6466.
    [122]
    M. A. Green, Nature Energy 1 (2016) 15015.
    [123]
    P. C. Du, X. W. Hu, C. Yi, H. C. Liu, P. Liu, H. L. Zhang and X. Gong, Adv. Funct. Mater. 25 (2015) 2420-2427.
    [124]
    Z. Wen, M. H. Yeh, H. Y. Guo, J. Wang, Y. L. Zi, W. D. Xu, J. N. Deng, L. Zhu, X. Wang, C. G. Hu, L. P. Zhu, X. H. Sun and Z. L. Wang, Sci. Adv. 2 (2016) 1600097.
    [125]
    S. Kalasina, P. Pattanasattayavong, M. Suksomboon, N. Phattharasupakun, J. Wutthiprom and M. Sawangphruk, Chem. Commun. 53 (2017) 709-712.
    [126]
    Y. L. Sun and X. B. Yan, Sol. Rrl. 1 (2017) 1700002.
    [127]
    Q. Zeng, Y. Q. Lai, L. X. Jiang, F. Y. Liu, X. J. Hao, L. H. Wang and M. A. Green, Adv. Energy. Mater. 10 (2020) 1903930.
    [128]
    J. Bae, Y. J. Park, M. Lee, S. N. Cha, Y. J. Choi, C. S. Lee, J. M. Kim and Z. L. Wang, Adv. Mater. 23 (2011) 3446-3449.
    [129]
    J. Liang, G. Y. Zhu, C. X. Wang, P. Y. Zhao, Y. R. Wang, Y. Hu, L. B. Ma, Z. X. Tie, J. Liu and Z. Jin, Nano Energy 52 (2018) 239-245.
    [130]
    F. Khatun, P. Thakur, A. Kool, S. Roy, N. A. Hoque, P. Biswas, B. Bagchi and S. Das, Langmuir 35 (2019) 6346-6355.
    [131]
    S. Ghosh, A. K. Sood and N. Kumar, Science 299 (2003) 1042-1044.
    [132]
    J. W. Liu, L. M. Dai and J. W. Baur, J Appl. Phys. 101 (2007) 064312.
    [133]
    J. Yin, X. M. Li, J. Yu, Z. H. Zhang, J. X. Zhou and W. L. Guo, Nat. Nanotechnol. 9 (2014) 378-383.
    [134]
    C. Z. Li, Z. Q. Tian, L. Z. Liang, S. B. Yin and P. K. Shen, ACS Appl. Mater. Inter. 11 (2019) 4922-4929.
    [135]
    F. Zhao, H. H. Cheng, Z. P. Zhang, L. Jiang and L. T. Qu, Adv. Mater. 27 (2015) 4351-4357.
    [136]
    K. Liu, P. H. Yang, S. Li, J. Li, T. P. Ding, G. B. Xue, Q. Chen, G. Feng and J. Zhou, Angew Chem. Int. Edit. 55 (2016) 8003-8007.
    [137]
    Z. L. Luo, C. H. Liu and S. S. Fan, Nano Energy 60 (2019) 371-376.
    [138]
    P. Kral and M. Shapiro, Phys. Rev. Lett. 86 (2001) 131-134.
    [139]
    B. N. J. Persson, U. Tartaglino, E. Tosatti and H. Ueba, Phys. Rev. B 69 (2004) 235410.
    [140]
    R. A. Vanwagenen and J. D. Andrade, J Colloid. Interf. Sci. 76 (1980) 305-314.
    [141]
    W. Olthuis, B. Schippers, J. Eijkel and A. van den Berg, Sensor Actuat. B-Chem. 111 (2005) 385-389.
    [142]
    R. H. Liu, C. H. Liu and S. S. Fan, ACS Appl. Mater. Inter. 10 (2018) 35273-35280.
    [143]
    D. Gao, C. H. Liu and S. S. Fan, Energy Technol-Ger. 8 (2020) 1901192.
    [144]
    D. Gao, C. H. Liu and S. S. Fan, ACS Appl. Energ. Mater. 3 (2020) 9468-9476.
    [145]
    S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. J. Dai, Science 283 (1999) 512-514.
    [146]
    Y. L. Yin, C. H. Liu and S. S. Fan, J Phys. Chem. C 116 (2012) 26185-26189.
    [147]
    Y. F. Xu, P. N. Chen, J. Zhang, S. L. Xie, F. Wan, J. Deng, X. L. Cheng, Y. J. Hu, M. Liao, B. J. Wang, X. M. Sun and H. S. Peng, Angew Chem. Int. Edit. 56 (2017) 12940-12945.
    [148]
    F. Zhao, Y. Liang, H. H. Cheng, L. Jiang and L. T. Qu, Energ. Environ. Sci. 9 (2016) 912-916.
    [149]
    K. S. Hu, R. Xiong, H. Y. Guo, R. L. Ma, S. D. Zhang, Z. L. Wang and V. V. Tsukruk, Adv. Mater. 28 (2016) 3549-3556.
    [150]
    I. Must, U. Johanson, F. Kaasik, I. Poldsalu, A. Punning and A. Aabloo, Phys. Chem. Chem. Phys. 15 (2013) 9605-9614.
    [151]
    E. Raymundo-Pinero, F. Leroux, F. Beguin, Adv. Mater. 18 (2006) 1877-1882.
    [152]
    Y. S. Liu, Q. Sun, W. Z. Li, K. R. Adair, J. Li, X. L. Sun, Green Energy Environ. 2 (2017) 246-277.
    [153]
    Z. L. Luo, Y. Wang, B. D. Kou, C. H. Liu, W. Zhang and L. Z. Chen, Energy Storage Materials 38 (2021) 9-16.
    [154]
    Z. R. Hou, B. Zhu, G. X. Li, P. Wang, C. Z. Meng, S. J. Guo, C. H. Liu and S. S. Fan, Energ. Fuel 35 (2021) 12706-12717.
    [155]
    Q. F. Li and N. J. Bjerrum, J Power Sources 110 (2002) 1-10.
    [156]
    D. Gelman, B. Shvartsev and Y. Ein-Eli, J Mater. Chem. A 2 (2014) 20237-20242.
    [157]
    G. M. Wu, S. J. Lin and C. C. Yang, J Membrane Sci. 280 (2006) 802-808.
    [158]
    Z. Zhang, C. Zuo, Z. Liu, Y. Yu, Y. Zuo and Y. Song, J Power Sources 251 (2014) 470-475.
    [159]
    Y. Xu, Y. Zhao, J. Ren, Y. Zhang and H. Peng, Angew Chem. Int. Ed. Engl. 55 (2016) 7979-7982.
    [160]
    S. Choi, D. Lee, G. Kim, Y. Y. Lee, B. Kim, J. Moon and W. Shim, Adv. Funct. Mater. 27 (2017) 1702244.
    [161]
    M. Pino, J. Chacon, E. Fatas and P. Ocon, J Power Sources 299 (2015) 195-201.
    [162]
    T. M. Di Palma, F. Migliardini, D. Caputo and P. Corbo, Carbohydr Polym. 157 (2017) 122-127.
    [163]
    M. J. Tan, B. Li, P. Chee, X. Ge, Z. Liu, Y. Zong and X. J. Loh, J Power Sources 400 (2018) 566-571.
    [164]
    X. Zhang, X.-G. Wang, Z. Xie and Z. Zhou, Green Energy & Environment 1 (2016) 4-17.
    [165]
    J. Ryu, M. Park and J. Cho, Adv. Mater. 31 (2019) e1804784.
    [166]
    P. Sun, J. Chen, Y. Huang, J.-H. Tian, S. Li, G. Wang, Q. Zhang, Z. Tian and L. Zhang, Energy Storage Materials 34 (2021) 427-435.
    [167]
    D. Gao, C. H. Liu and S. S. Fan, J Mater. Chem. A 9 (2021) 23555-23562.
    [168]
    M. Falk, V. Andoralov, M. Silow, M. D. Toscano and S. Shleev, Anal. Chem. 85 (2013) 6342-6348.
    [169]
    M. Cadet, S. Gounel, C. Stines-Chaumeil, X. Brilland, J. Rouhana, F. Louerat and N. Mano, Biosens. Bioelectron. 83 (2016) 60-67.
    [170]
    A. J. Bandodkar, I. Jeerapan and J. Wang, ACS Sensors 1 (2016) 464-482.
    [171]
    W. Z. Jia, X. Wang, S. Imani, A. J. Bandodkar, J. Ramirez, P. P. Mercier and J. Wang, J Mater. Chem. A 2 (2014) 18184-18189.
    [172]
    J. Lv, I. Jeerapan, F. Tehrani, L. Yin, C. A. Silva-Lopez, J. H. Jang, D. Joshuia, R. Shah, Y. Y. Liang, L. Y. Xie, F. Soto, C. R. Chen, E. Karshalev, C. C. Kong, Z. M. Yang and J. Wang, Energy Environ. Sci. 11 (2018) 3431-3442.
    [173]
    I. Jeerapan, J. R. Sempionatto and J. Wang, Adv. Funct. Mater. 30 (2020) 1906243.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (247) PDF downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return