Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Ruixiang Qu, Shuaiheng Zhao, Na Liu, Xiangyu Li, Huajun Zhai, Ya'nan Liu, Yen Wei, Lin Feng. 3D inner-outer asymmetric sponge for enormous-volume emulsion wastewater treatment based on a new “demulsification-transport” mechanism. Green Energy&Environment, 2023, 8(5): 1398-1408. doi: 10.1016/j.gee.2022.02.001
Citation: Ruixiang Qu, Shuaiheng Zhao, Na Liu, Xiangyu Li, Huajun Zhai, Ya'nan Liu, Yen Wei, Lin Feng. 3D inner-outer asymmetric sponge for enormous-volume emulsion wastewater treatment based on a new “demulsification-transport” mechanism. Green Energy&Environment, 2023, 8(5): 1398-1408. doi: 10.1016/j.gee.2022.02.001

3D inner-outer asymmetric sponge for enormous-volume emulsion wastewater treatment based on a new “demulsification-transport” mechanism

doi: 10.1016/j.gee.2022.02.001
  • Although oily wastewater treatment realized by superwetting materials has attracted heightened attention in recent years, how to treat enormous-volume emulsion wastewater is still a tough problem, which is ascribed to the emulsion accumulation. Herein, to address this problem, a material is presented by subtly integrating chemical demulsification and 3D inner-outer asymmetric wettability to a sponge substrate, and thus wettability gradient-driven oil directional transport for achieving unprecedented enormous-volume emulsion wastewater treatment is realized based on a “demulsification-transport” mechanism. The maximum treatment volume realized by the sponge is as large as 3 L (2.08 × 104 L per cubic meter of the sponge) in one cycle, which is about 100 times of the reported materials. Besides, owing to the large pore size of the sponge, 9000 L m2 h−1 (LMH) separation flux and 99.5% separation efficiency are realized simultaneously, which overcomes the trade-off dilemma. Such a 3D inner-outer asymmetric sponge displaying unprecedented advantage in the treatment volume can promote the development of the oily wastewater treatment field, as well as expand the application prospects of superwetting materials, especially in continuous water treatment.

     

  • loading
  • [1]
    B.L. Peng, Z.L. Yao, X.C. Wang, M. Crombeen, D.G. Sweeney, K.C. Tam, Green Energy Environ. 5 (2020) 37-49.
    [2]
    D. Lu, T. Zhang, J. Ma, Environ. Sci. Technol. 49 (2015) 4235-4244.
    [3]
    Y. Peng, Y. Liu, J. Dai, L. Cao, X. Liu, Sep. Purif. Technol. 240 (2020) 116592.
    [4]
    S. Jiao, Y.M. Zhao, C.S. Li, B.S. Wang, Y. Qu, Green Energy Environ. 4 (2019) 66-74.
    [5]
    M. Padaki, R.S. Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M.A. Kassim, N. Hilal, A.F. Ismail, Desalination 357 (2015) 197-207.
    [6]
    H.J. Tanudjaja, C.A. Hejase, V.V. Tarabara, A.G. Fane, J.W. Chew, Water Res. 156 (2019) 347-365.
    [7]
    Z. Wang, S. Lin, Water Res. 112 (2017) 38-47.
    [8]
    R. Qu, X. Li, W. Zhang, Y. Liu, H. Zhai, Y. Wei, L. Feng, J. Mater. Chem. A 8 (2020) 7677-7686.
    [9]
    B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Chem. Eng. J. 165 (2010) 447-456.
    [10]
    Q. Chang, J.-E. Zhou, Y. Wang, J. Liang, X. Zhang, S. Cerneaux, X. Wang, Z. Zhu, Y. Dong, J. Membr. Sci. 456 (2014) 128-133.
    [11]
    Z. Liu, W. Wu, Y. Liu, C. Qin, M. Meng, Y. Jiang, J. Qiu, J. Peng, Sep. Purif. Technol. 199 (2018) 37-46.
    [12]
    M.S. Chowdhury, W. Zheng, S. Kumari, J. Heyman, X. Zhang, P. Dey, D.A. Weitz, R. Haag, Nat. Commun. 10 (2019) 4546.
    [13]
    R. Qu, N. Liu, Y. Chen, W. Zhang, Q. Zhang, Y. Liu, L. Feng, J. Mater. Chem. A 6 (2018) 6435-6441.
    [14]
    L. Feng, Z.Y. Zhang, Z.H. Mai, Y.M. Ma, B.Q. Liu, L. Jiang, D.B. Zhu, Angew. Chem. Int. Ed. 43 (2004) 2012-2014.
    [15]
    Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, L. Jiang, Adv. Mater. 25 (2013) 2422-2427.
    [16]
    M. Tao, L. Xue, F. Liu, L. Jiang, Adv. Mater. 26 (2014) 2943-2948.
    [17]
    J. Zhang, S. Seeger, Adv. Funct. Mater. 21 (2011) 4699-4704.
    [18]
    M. Obaid, H.O. Mohamed, A.S. Yasin, M.A. Yassin, O.A. Fadali, H. Kim, N.a.M. Barakat, Water Res. 123 (2017) 524-535.
    [19]
    W. Zhang, N. Liu, Y. Cao, Y. Chen, L. Xu, X. Lin, L. Feng, Adv. Mater. 27 (2015) 7349-7355.
    [20]
    W. Zhang, N. Liu, Y. Cao, X. Lin, Y. Liu, L. Feng, Adv. Mater. Interfaces 4 (2017) 1700029.
    [21]
    W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, L. Jiang, Adv. Mater. 25 (2013) 2071-2076.
    [22]
    N. Helali, M. Rastgar, M.F. Ismail, M. Sadrzadeh, Sep. Purif. Technol. 238 (2020) 116451.
    [23]
    G. Shi, Y. Shen, P. Mu, Q. Wang, Y. Yang, S. Ma, J. Li, Green Chem. 22 (2020) 1345-1352.
    [24]
    G. Jiang, W. Fu, Y. Wang, X. Liu, Y. Zhang, F. Dong, Z. Zhang, X. Zhang, Y. Huang, S. Zhang, X. Lv, Environ. Sci. Technol. 51 (2017) 10519-10525.
    [25]
    G. Jiang, J. Li, Y. Nie, S. Zhang, F. Dong, B. Guan, X. Lv, Environ. Sci. Technol. 50 (2016) 7650-7657.
    [26]
    X. Zhang, Z. Li, K. Liu, L. Jiang, Adv. Funct. Mater. 23 (2013) 2881-2886.
    [27]
    Q. Zhu, Q. Pan, ACS Nano 8 (2014) 1402-1409.
    [28]
    Y. Si, Z. Dong, Langmuir 36 (2020) 667-681.
    [29]
    J. Ju, Y. Zheng, L. Jiang, Acc. Chem. Res. 47 (2014) 2342-2352.
    [30]
    Y. Si, T. Wang, C. Li, C. Yu, N. Li, C. Gao, Z. Dong, L. Jiang, ACS Nano 12 (2018) 9214-9222.
    [31]
    H. Dai, C. Goo, J. Sun, C. Li, N. Li, L. Wu, Z. Dong, L. Jiang, Adv. Mater. 31 (2019) 1905449.
    [32]
    J. Wang, W. Gao, H. Zhang, M. Zou, Y. Chen, Y. Zhao, Sci. Adv. 4 (2018) eaat7392.
    [33]
    S. Daniel, M.K. Chaudhury, J.C. Chen, Science 291 (2001) 633-636.
    [34]
    D. Wang, D. Yang, C. Huang, Y. Huang, D. Yang, H. Zhang, Q. Liu, T. Tang, M.G. El-Din, T. Kemppi, B. Perdicakis, H. Zeng, Fuel 286 (2021) 119390.
    [35]
    N. Hassanshahi, G. Hu, J. Li, Molecules 25 (2020) 4915.
    [36]
    J. Wu, W. Wei, S. Li, Q. Zhong, F. Liu, J. Zheng, J. Wang, J. Membr. Sci. 563 (2018) 126-133.
    [37]
    Q. Cai, Z. Zhu, B. Chen, B. Zhang, Water Res. 149 (2019) 292-301.
    [38]
    C. Xu, F. Yan, M. Wang, H. Yan, Z. Cui, J. Li, B. He, J. Membr. Sci. 602 (2020) 117974.
    [39]
    Z. Wang, Y. Wang, G. Liu, Angew. Chem. Int. Ed. 55 (2016) 1291-1294.
    [40]
    Z. Wang, G. Liu, S. Huang, Angew. Chem. Int. Ed. 55 (2016) 14610-14613.
    [41]
    Z. Wang, M. Lehtinen, G. Liu, Angew. Chem. Int. Ed. 56 (2017) 12892-12897.
    [42]
    Y. Zhu, J. Wang, F. Zhang, S. Gao, A. Wang, W. Fang, J. Jin, Adv. Funct. Mater. 28 (2018) 1804121.
    [43]
    Y. Zhao, M. Zhang, Z. Wang, Adv. Mater. Interfaces 3 (2016) 1500664.
    [44]
    J. Zhao, D. Li, H. Han, J. Lin, J. Yang, Q. Wang, X. Feng, N. Yang, Y. Zhao, L. Chen, Langmuir 35 (2019) 2630-2638.
    [45]
    G. Wen, Z. Guo, J. Mater. Chem. A 6 (2018) 7042-7052.
    [46]
    R. Ou, J. Wei, L. Jiang, G.P. Simon, H. Wang, Environ. Sci. Technol. 50 (2016) 906-914.
    [47]
    W. Zhang, X. Li, R. Qu, Y. Liu, Y. Wei, L. Feng, J. Mater. Chem. A 7 (2019) 4941-4949.
    [48]
    K. Chen, S. Zhou, L. Wu, ACS Nano 10 (2016) 1386-1394.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(4) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return