Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Wei-Shi Sun, Ming-Jie Yin, Wen-Hai Zhang, Shuo Li, Naixin Wang, Quan-Fu An. Tailor-made microstructures lead to high-performance robust PEO membrane for CO2 capture via green fabrication technique. Green Energy&Environment, 2023, 8(5): 1389-1397. doi: 10.1016/j.gee.2022.01.016
Citation: Wei-Shi Sun, Ming-Jie Yin, Wen-Hai Zhang, Shuo Li, Naixin Wang, Quan-Fu An. Tailor-made microstructures lead to high-performance robust PEO membrane for CO2 capture via green fabrication technique. Green Energy&Environment, 2023, 8(5): 1389-1397. doi: 10.1016/j.gee.2022.01.016

Tailor-made microstructures lead to high-performance robust PEO membrane for CO2 capture via green fabrication technique

doi: 10.1016/j.gee.2022.01.016
  • Emerging excessive greenhouse gas emissions pose great threats to the ecosystem, which thus requires efficient CO2 capture to mitigate the disastrous issue. In this report, large molecular size bisphenol A ethoxylate diacrylate (BPA) was employed to crosslink poly (ethylene glycol) methyl ether acrylate (PEGMEA) via the green and rapid UV polymerization strategy. The microstructure of such-prepared membrane could be conveniently tailored by tuning the ratio of the two prepolymers, aiming at obtaining the optimized microstructures with suitable mesh size and PEO sol content, which was approved by a novel low-field nuclear magnetic resonance technique. The optimum membrane overcomes the trade-off challenge: dense microstructures lower the gas permeability while loose microstructures lower high-pressure-resistance capacity, realizing a high CO2 permeability of 1711 Barrer and 100-h long-term running stability under 15 atm. The proposed membrane fabrication approach, hence, opens a novel gate for developing high-performance robust membranes for CO2 capture.

     

  • loading
  • [1]
    H. Zhao, X. Ding, P. Yang, L. Li, X. Li, Y. Zhang, J. Membr. Sci. 489 (2015) 258-263.
    [2]
    J. Deng, Z. Dai, J. Yan, M. Sandru, E. Sandru, R.J. Spontak, L. Deng, J. Membr. Sci. 570-571 (2019) 455-463.
    [3]
    Y. Xie, H. Dong, S. Zhang, X. Lu, X. Ji, Green Energy Environ. 1 (2016) 195-200.
    [4]
    Y. Liu, Z. Dai, Z. Zhang, S. Zeng, F. Li, X. Zhang, Y. Nie, L. Zhang, S. Zhang, X. Ji, Green Energy Environ. 6 (2021) 314-328.
    [5]
    S. Janakiram, L. Ansaloni, S.-A. Jin, X. Yu, Z. Dai, R.J. Spontak, L. Deng, Green Chem. 22 (2020) 3546-3557.
    [6]
    H. Cheng, The Innovation 1 (2020) 100055.
    [7]
    S. Luo, K.A. Stevens, J.S. Park, J.D. Moon, Q. Liu, B.D. Freeman, R. Guo, ACS Appl. Mater. Inter. 8 (2016) 2306-2317.
    [8]
    R.M.L. Helberg, J.OE. Torstensen, Z. Dai, S. Janakiram, G. Chinga-Carrasco, OE.W. Gregersen, K. Syverud, L. Deng, Green Energy Environ. 6 (2021) 585-596.
    [9]
    C.-C. Hu, C.-H. Lin, Y.-H. Chiao, Y.-C. Huang, H.-A. Tsai, W.-S. Hung, K.-R. Lee, J.-Y. Lai, ACS Sustainable Chem. Eng. 6 (2018) 15341-15348.
    [10]
    Z. Dai, L. Ansaloni, L. Deng, Green Energy Environ. 1 (2016) 102-128.
    [11]
    R.M. Lilleby Helberg, Z. Dai, L. Ansaloni, L. Deng, Green Energy Environ. 5 (2020) 59-68.
    [12]
    M. Galizia, W.S. Chi, Z.P. Smith, T.C. Merkel, R.W. Baker, B.D. Freeman, Macromolecules 50 (2017) 7809-7843.
    [13]
    L. Dong, C. Zhang, Y. Bai, D. Shi, X. Li, H. Zhang, M. Chen, ACS Sustainable Chem. Eng. 4 (2016) 3486-3496.
    [14]
    S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, M.D. Guiver, Energy Environ. Sci. 9 (2016) 1863-1890.
    [15]
    S.R. Reijerkerk, A.C. Ijzer, K. Nijmeijer, A. Arun, R.J. Gaymans, M. Wessling, ACS Appl. Mater. Inter. 2 (2010) 551-560.
    [16]
    S.L. Liu, L. Shao, M.L. Chua, C.H. Lau, H. Wang, S. Quan, Prog. Polym. Sci. 38 (2013) 1089-1120.
    [17]
    S. Quan, S. Li, Z. Wang, X. Yan, Z. Guo, L. Shao, J. Mater. Chem. A 3 (2015) 13758-13766.
    [18]
    T.C. Merkel, H. Lin, X. Wei, R. Baker, J. Membr. Sci. 359 (2010) 126-139.
    [19]
    H. Lin, E.V. Wagner, J.S. Swinnea, B.D. Freeman, S.J. Pas, A.J. Hill, S. Kalakkunnath, D.S. Kalika, J. Membr. Sci. 276 (2006) 145-161.
    [20]
    X. Jiang, S. Li, L. Shao, Energy Environ. Sci. 10 (2017) 1339-1344.
    [21]
    W.-S. Sun, M.-J. Yin, W.-H. Zhang, S. Li, N. Wang, Q.-F. An, ACS Sustainable Chem. Eng. 9 (2021) 10167-10175.
    [22]
    J. Liu, S. Zhang, D.-E. Jiang, C.M. Doherty, A.J. Hill, C. Cheng, H.B. Park, H. Lin, Joule 3 (2019) 1881-1894.
    [23]
    P. Kritzer, E. Dinjus, Chem. Eng. J. 83 (2001) 207-214.
    [24]
    H. Lin, E. Van Wagner, B.D. Freeman, L.G. Toy, R.P. Gupta, Science 311 (2006) 639.
    [25]
    J.J. Richards, M.K. Danquah, S. Kalakkunnath, D.S. Kalika, V.A. Kusuma, S.T. Matteucci, B.D. Freeman, Chem. Eng. Sci. 64 (2009) 4707-4718.
    [26]
    M.-J. Yin, M. Yao, S. Gao, A.P. Zhang, H.-Y. Tam, P.-K.A. Wai, Adv. Mater. 28 (2016) 1394-1399.
    [27]
    M.-J. Yin, Z. Yin, Y. Zhang, Q. Zheng, A.P. Zhang, Nano Energy 58 (2019) 96-104.
    [28]
    M.-J. Yin, Q. Zhao, J. Wu, K. Seefeldt, J. Yuan, ACS Nano 12 (2018) 12551-12557.
    [29]
    M. Yin, B. Gu, Q. Zhao, J. Qian, A. Zhang, Q. An, S. He, Anal. Bioanal. Chem. 399 (2011) 3623-3631.
    [30]
    R.D. Raharjo, H. Lin, D.F. Sanders, B.D. Freeman, S. Kalakkunnath, D.S. Kalika, J. Membr. Sci. 283 (2006) 253-265.
    [31]
    B. Comesana-Gandara, J. Chen, C.G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J.C. Jansen, N.B. Mckeown, Energy Environ. Sci. 12 (2019) 2733-2740.
    [32]
    X. Jiang, S. He, S. Li, Y. Bai, L. Shao, J. Mater. Chem. A 7 (2019) 16704-16711.
    [33]
    S. Quan, Y.P. Tang, Z.X. Wang, Z.X. Jiang, R.G. Wang, Y.Y. Liu, L. Shao, Macromol. Rapid Comm. 36 (2015) 490-495.
    [34]
    X. Ning, X. Cao, C. Li, D. Li, P. Zhang, Y. Gong, R. Xia, B. Wang, L. Wei, Nucl. Instrum. Meth. B 397 (2017) 75-81.
    [35]
    J. Deng, J. Yu, Z. Dai, L. Deng, Ind. Eng. Chem. Res. 58 (2019) 5261-5268.
    [36]
    H. Ju, B.D. Mccloskey, A.C. Sagle, V.A. Kusuma, B.D. Freeman, J. Membr. Sci. 330 (2009) 180-188.
    [37]
    D. Das, A. Chandrasekaran, S. Venkatram, R. Ramprasad, Chem. Mater. 30 (2018) 8804-8810.
    [38]
    J. Shi, Y. Yang, H. Shao, J. Membr. Sci. 547 (2018) 1-10.
    [39]
    L. Zhao, J. Fu, Z. Du, X. Jia, Y. Qu, F. Yu, J. Du, Y. Chen, J. Membr. Sci. 593 (2020) 117428.
    [40]
    H. Lin, E. Van Wagner, R. Raharjo, B.D. Freeman, I. Roman, Adv. Mater. 18 (2006) 39-44.
    [41]
    U. Heuert, M. Knorgen, H. Menge, G. Scheler, H. Schneider, Polym. Bull. 37 (1996) 489-496.
    [42]
    W.-H. Zhang, M.-J. Yin, Q. Zhao, C.-G. Jin, N. Wang, S. Ji, C.L. Ritt, M. Elimelech, Q.-F. An, Nat. Nanotechnol. 16 (2021) 337-343.
    [43]
    M.G. Cowan, D.L. Gin, R.D. Noble, Accounts Chem. Res. 49 (2016) 724-732.
    [44]
    Y.-L. Ji, Q.-F. An, Y.-S. Guo, W.-S. Hung, K.-R. Lee, C.-J. Gao, J. Mater. Chem. A 4 (2016) 4224-4231.
    [45]
    S. Cong, Q. Shen, M. Shan, J. Wang, J. Liu, Y. Zhang, Chem. Eng. J. 383 (2020) 123137.
    [46]
    H. Lin, T. Kai, B.D. Freeman, S. Kalakkunnath, D.S. Kalika, Macromolecules 38 (2005) 8381-8393.
    [47]
    M. Liu, M.D. Nothling, P.A. Webley, J. Jin, Q. Fu, G.G. Qiao, Chem. Eng. J. 396 (2020) 125328.
    [48]
    J. Liu, X. Hou, H.B. Park, H. Lin, Chem. Eur. J. 22 (2016) 15980-15990.
    [49]
    S. Li, X. Jiang, H. Sun, S. He, L. Zhang, L. Shao, J. Membr. Sci. 586 (2019) 185-191.
    [50]
    W. Han, M.-J. Yin, W.-H. Zhang, Z.-J. Liu, N. Wang, K.T. Yong, Q.-F. An, Adv. Sci. (2021) 2102594.
    [51]
    L.M. Robeson, J. Membr. Sci. 320 (2008) 390-400.
    [52]
    W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim, Desalination 287 (2012) 190-199.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (114) PDF downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return