Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Fang Li, Qian Zhang, Jing Liu, Nan Cui, Guoqing Guan, Wei Huang. Electron promoted ZnO for catalytic synthesis of higher alcohols from syngas. Green Energy&Environment, 2022, 7(6): 1390-1400. doi: 10.1016/j.gee.2022.01.015
Citation: Fang Li, Qian Zhang, Jing Liu, Nan Cui, Guoqing Guan, Wei Huang. Electron promoted ZnO for catalytic synthesis of higher alcohols from syngas. Green Energy&Environment, 2022, 7(6): 1390-1400. doi: 10.1016/j.gee.2022.01.015

Electron promoted ZnO for catalytic synthesis of higher alcohols from syngas

doi: 10.1016/j.gee.2022.01.015
  • Direct conversion of syngas from those non-petroleum carbon resources to higher alcohols are very attractive due to the process simplicity with low energy consumption. However, the reaction always suffers from low yield as well as low selectivity. Herein, effective increase of higher alcohols proportion in the product is realized by direct conversion of syngas over electronically-modulated ZnO semiconductor via Cu doping. It is considered that the lower Fermi level and narrower band gap of catalysts by embedding Cu2+ into ZnO lattice could facilitate donor reaction by boosting the process for the reactants to obtain electrons on the catalyst surface for the formation of CHx species and carbon chain growth, in which the Cu doping on ZnO lattice play important role in the promotion of CO adsorption. As a result, 4 mol% Cu doped ZnO exhibits a highest C2+OH/ROH fraction of 48.1%. Selectivity of catalysts from straight chain alcohol is better than from branch chain alcohol, which is different from promoted Cu/ZnO based catalyst. However, over-doping of Cu (7 mol%) on ZnO results in the aggregation Cu species on ZnO surface, leading to a sharp decrease of higher alcohols proportion to 3.2%. The results shed light on the nature that a direct correlation between semiconductor Fermi level and synthesis of higher alcohols, and the semiconductor-based catalysts mainly accelerate the hydrogenation reactions by enhancing thermally excited electron transfer.

     

  • loading
  • [1]
    J. Liang, F. Liu, M. Li, W. Liu, M. Tong, Water Res. 137 (2018) 120–129.
    [2]
    L. Zhang, W. Wang, S. Sun, Y. Sun, E. Gao, Z. Zhang, Appl. Catal. B Environ. 148–149 (2014) 164–169.
    [3]
    H. Chen, Y. Xu, K. Zhu, H. Zhang, Appl. Catal. B Environ. 284 (2021) 119732.
    [4]
    L. Lin, H. Ou, Y. Zhang, X. Wang, ACS Catal. 6 (2016) 3921–3931.
    [5]
    K. Suzuki, N. Mizuno, K. Yamaguchi, ACS Catal. 8 (2018) 10809–10825.
    [6]
    J. Ran, T. Pan, Y. Wu, C. Chu, P. Cui, P. Zhang, X. Ai, C.F. Fu, Z. Yang, T. Xu, Angew. Chem. Int. Ed. 58 (2019) 16463–16468.
    [7]
    Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 10 (2016) 2745–2751.
    [8]
    Q. Liang, J. Jin, M. Zhang, C. Liu, S. Xu, C. Yao, Z. Li, Appl. Catal. B Environ. 218 (2017) 545–554.
    [9]
    J. Wang, Y. Wang, W. Wang, Z. Ding, R. Geng, P. Li, D. Pan, J. Liang, H. Qin, Q. Fan, Chem. Eng. J. 383 (2020) 123193.
    [10]
    D. Ruan, S. Kim, M. Fujitsuka, T. Majima, Appl. Catal. B Environ. 238 (2018) 638–646.
    [11]
    Z. Guo, S. Zhu, Y. Yong, X. Zhang, X.H. Dong, J.F. Du, J.N. Xie, Q. Wang, Z.J. Gu, Y.L. Zhao, Adv. Mater. 29 (2017) 1704136.
    [12]
    S. Peng, J. Yang, L. Guo, J. Wang, J. Zhao, J. Xu, Z. Li, Adv. Mater. Interfaces 7 (2020) 1901879.
    [13]
    J. Bai, Y. Li, P. Wei, J. Liu, W. Chen, L. Liu, Small 15 (2019) 1900020.
    [14]
    Y.Y. Hu, Z.K. Li, J.H. Yang, H.J. Zhu, Chem. Eng. J. 360 (2019) 200–211.
    [15]
    R.L.Z. Hoye, L.C. Lee, R.C. Kurchin, T.N. Huq, K.H.L. Zhang, M. Sponseller, L. Nienhaus, R.E. Brandt, J. Jean, J.A. Polizzotti, A. Kursumović, M.G. Bawendi, V. Bulović, V. Stevanović, T. Buonassisi, J.L. MacManus-Driscoll, Adv. Mater. 29 (2017) 1702176.
    [16]
    W. Zeng, J. Li, L. Feng, H. Pan, X. Zhang, H. Sun, Z. Liu, Adv. Funct. Mater. 29 (2019) 1900129.
    [17]
    J.J. Jiang, Y.Y. Song, X.Y. Wang, T.R. Li, M.Y. Li, Y.H. Lin, T.F. Xie, S.S. Dong, Catal. Sci. Technol. 10 (2020) 3324.
    [18]
    X. Zhang, W. Yang, M. Gao, H. Liu, K. Li, Y. Yu, Green Energy Environ. 7 (2020) 66–74.
    [19]
    R. Wang, J. Wu, X. Mao, J.M. Wang, Q.Z. Liu, Y.F. Qi, P. He, X.M. Qi, G.L. Liu, Y. Guan, Appl. Surf. Sci. 556 (2021) 149804.
    [20]
    X. Wang, C. Zhou, L. Yin, R. Zhang, G. Liu, ACS Sustain. Chem. Eng. 7 (2019) 7900–7907.
    [21]
    L. Hu, H. He, D. Xia, Y. Huang, J. Xu, H. Li, C. He, W. Yang, D. Shu, P.K. Wong, ACS Appl. Mater. Interfaces 10 (2018) 18693–18708.
    [22]
    D.B. Zeng, K. Yang, C.L. Yu, F.Y. Chen, X.X. Li, Z. Wu, H. Liu, Appl. Catal. B Environ. 237 (2018) 449–463.
    [23]
    X.W. Feng, H. Chen, F. Jiang, X. Wang, Catal. Sci. Technol. 9 (2019) 2849–2857.
    [24]
    X. Wang, G. Liu, L. Wang, Z. Chen, G.Q.M. Lu, H. Cheng, Adv. Energy Mater. 2 (2012) 42–46.
    [25]
    T. Ling, S.A. Kulinich, Z. Zhu, S. Qiao, X. Du, Adv. Funct. Mater. 24 (2014) 707–715.
    [26]
    I. Vamvasakis, B. Liu, G.S. Armatas, Adv. Funct. Mater. 26 (2016) 8062–8071.
    [27]
    C. Feng, L. Tang, Y. Deng, J. Wang, Y. Liu, X. Ouyang, H. Yang, J. Yu, J. Wang, Appl. Catal. B Environ. 281 (2021) 119539.
    [28]
    K.M. Alam, P. Kumar, P. Kar, U.K. Thakur, S. Zeng, K. Cui, K. Shankar, Nanoscale Adv. 1 (2019) 1460–1471.
    [29]
    J. Sun, J. Wen, G. Wu, Z. Zhang, X. Chen, G. Wang, M. Liu, Adv. Funct. Mater. 30 (2020) 2004108.
    [30]
    T. Zhao, Z. Xing, Z. Xiu, Z. Li, S. Yang, W. Zhou, ACS Appl. Mater. Interfaces 11 (2019) 7104–7111.
    [31]
    X. Jiang, L. Wang, F. Yu, Y. Nie, Q. Xing, X. Liu, Y. Pei, J. Zou, W. Dai, ACS Sustain. Chem. Eng. 6 (2018) 12695–12705.
    [32]
    H. Ding, D. Han, Y. Han, Y. Liang, X. Liu, Z. Li, S. Zhu, S. Wu, J. Hazard. Mater. 393 (2020) 122423.
    [33]
    Y. Liu, K. Yan, J. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 28255–28264.
    [34]
    Y. Cui, L. Yang, J. Zheng, Z. Wang, B. Li, Y. Yan, M. Meng, J. Colloid Interface Sci. 586 (2021) 335–348.
    [35]
    H. Wang, H. Ye, B. Zhang, F. Zhao, B. Zeng, J. Mater. Chem. A 5 (2017) 10599–10608.
    [36]
    Z. Shi, Y. Zhang, X. Shen, G. Duoerkun, B. Zhu, L. Zhang, M. Li, Z. Chen, Chem. Eng. J. 386 (2020) 124010.
    [37]
    Y. Bai, H. Bai, K. Qu, F. Wang, P. Guan, D. Xu, W. Fan, W. Shi, Chem. Eng. J. 362 (2019) 349–356.
    [38]
    J. Jiang, X. Wang, Y. Liu, Y. Ma, T. Li, Y. Lin, T. Xie, S. Dong, Appl. Catal. B Environ. 278 (2020) 119349.
    [39]
    Q. Yan, X. Xie, Y. Liu, S. Wang, M. Zhang, Y. Chen, Y. Si, J. Hazard. Mater. 371 (2019) 304–315.
    [40]
    Y. Bai, L. Ye, L. Wang, X. Shi, P. Wang, W. Bai, P.K. Wong, Appl. Catal. B Environ. 194 (2016) 98–104.
    [41]
    Y. Dong, J. Cao, B. Wang, S. Ma, Y. Liu, ACS Appl. Mater. Interfaces 10 (2018) 3723–3731.
    [42]
    L. Li, C. Guo, J. Shen, J. Ning, Y. Zhong, Y. Hu, Chem. Eng. J. 400 (2020) 125925.
    [43]
    Z. Jiang, X. Liang, Y. Liu, T. Jing, Z. Wang, X. Zhang, X. Qin, Y. Dai, B. Huang, Appl. Catal. B Environ. 211 (2017) 252–257.
    [44]
    X. Wang, Y. Zhang, C. Zhou, D. Huo, R. Zhang, L. Wang, Appl. Catal. B Environ. 268 (2020) 118390.
    [45]
    X. Hu, Y. Zhang, B. Wang, H. Li, W. Dong, Appl. Catal. B Environ. 256 (2019) 117789.
    [46]
    F. Yang, Q. Zhang, J. Zhang, L. Zhang, M. Cao, W. Dai, Appl. Catal. B Environ. 278 (2020) 119290.
    [47]
    S. Wang, L. Chen, X. Zhao, J. Zhang, Z. Ao, W. Liu, H. Wu, L. Shi, Y. Yin, X. Xu, C. Zhao, X. Duan, S. Wang, H. Sun, Appl. Catal. B Environ. 278 (2020) 119312.
    [48]
    J. Lv, Z. Zhang, J. Wang, X. Lu, W. Zhang, T. Lu, ACS Appl. Mater. Interfaces 11 (2018) 2655–2661.
    [49]
    J. Di, J. Xia, S. Yin, H. Xu, L. Xu, Y. Xu, M. He, H. Li, J. Mater. Chem. A 2 (2014) 5340.
    [50]
    N. Tian, H.W. Huang, S.B. Wang, T.R. Zhang, X. Du, Y.H. Zhang, Appl. Catal. B Environ. 267 (2020) 118697.
    [51]
    C.J. Zhang, W.H. Fei, H.Q. Wang, N.J. Li, D.Y. Chen, Q.F. Xu, H. Li, J.H. He, J. Lu, J. Hazard. Mater. 399 (2020) 123109.
    [52]
    Y. Zhang, M. Zhu, S. Zhang, Y. Cai, Z. Lv, M. Fang, X. Tan, X. Wang, Appl. Catal. B Environ. 279 (2020) 119390.
    [53]
    J. Gao, F. Zhang, H. Xue, L. Zhang, Y. Peng, X. Li, Y. Gao, N. Li, G. Lei, Appl. Catal. B Environ. 281 (2021) 119509.
    [54]
    W.L. Shi, C. Liu, M.Y. Li, X. Lin, F. Guo, J.Y. Shi, J. Hazard. Mater. 389 (2020) 121907.
    [55]
    M. Trojanowicz, A. Bojanowska-Czajka, T. Szreder, Sylwia Mńska-Wielgosz, K. Bobrowski, E. Fornal, H. Nichipor, Chem. Eng. J. 403 (2021) 126169.
    [56]
    P.J. Vikesland, E.M. Fiss, K.R. Wigginton, K. McNeill, W.A. Arnold, Environ. Sci. Technol. 47 (2013) 6764–6772.
    [57]
    R.S. Sahu, Y. Shih, W. Chen, J. Hazard. Mater. 402 (2021) 123509.
    [58]
    J. Wang, H. Yao, Z. Fan, L. Zhang, J. Wang, S. Zang, Z. Li, ACS Appl. Mater. Interfaces 8 (2015) 3765–3775.
    [59]
    N. Ma, A. Chen, Z. Bian, Y. Yang, H. Wang, Chem. Eng. J. 359 (2019) 530–541.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (118) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return