Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Haifang Shen, Hao Li, Zhensheng Yang, Chunli Li. Magic of hydrogen spillover: Understanding and application. Green Energy&Environment, 2022, 7(6): 1161-1198. doi: 10.1016/j.gee.2022.01.013
Citation: Haifang Shen, Hao Li, Zhensheng Yang, Chunli Li. Magic of hydrogen spillover: Understanding and application. Green Energy&Environment, 2022, 7(6): 1161-1198. doi: 10.1016/j.gee.2022.01.013

Magic of hydrogen spillover: Understanding and application

doi: 10.1016/j.gee.2022.01.013
  • The hydrogen spillover effect (HSPE) plays an important role in heterogeneous catalysis and hydrogen storage as an interfacial phenomenon, which facilitates the improvement of hydrogen storage properties of porous nanomaterials and indirectly or directly affects the reaction performance of multiphase catalytic reactions. The setting-up of the word “hydrogen spillover” opened up a new area to gain insight into the dynamic behavior of migrating hydrogen atoms on a catalyst surface. However, a comprehensive understanding of the HSPE is still lacking. Today, the development of advanced characterization techniques provides increasingly valuable information to further our understanding of the HSPE. Based on these considerations, in this review, we hope to provide some answers to the question “What is hydrogen spillover and how do we recognize it?”. To do this, we will rely on advanced characterization techniques as well as experimental and theoretical studies. Then, we discuss in detail the influences of the HSPE on hydrogen storage performance and the important catalytic effects of the HSPE in catalysis. These effects will be reviewed by looking through the catalytic results obtained in many reactions in thermal catalysis, electrocatalysis, and photocatalysis. Furthermore, based on the application potential of hydrogen spillover, we present some preliminary research proposals and discuss the opportunities and challenges that remain to be faced in this research area.

     

  • loading
  • [1]
    J. Wei, S.N. Qin, J.L. Liu, X.Y. Ruan, P.Z. Guan, H. Yan, D.Y. Wei, P.H. Zhang, P.J. Cheng, P.H. Xu, P.Z.Q. Tian, P.J.F. Li, Angew. Chem. Int. Ed. 59 (2020) 10343–10347.
    [2]
    L. Jiang, K. Liu, S.F. Hung, L. Zhou, R. Qin, Q. Zhang, P. Liu, L. Gu, H.M. Chen, G. Fu, N. Zheng, Nat. Nanotechnol. 15 (2020) 848–853.
    [3]
    F. Zaera, Nature 541 (2017) 37–38.
    [4]
    H. Shen, X. Wu, D. Jiang, X. Li, J. Ni, Chin. J. Catal. 38 (2017) 1597–1602.
    [5]
    Y. Yin, Z.-F. Yang, Z.-H. Wen, A.-H. Yuan, X.-Q. Liu, Z.-Z. Zhang, H. Zhou, Sci. Rep. 7 (2017) 4509.
    [6]
    G. Zhan, H.C. Zeng, Nat. Commun. 9 (2018) 3778.
    [7]
    S. Wu, K.-Y. Tseng, R. Kato, T.-S. Wu, A. Large, Y.-K. Peng, W. Xiang, H. Fang, J. Mo, I. Wilkinson, Y.-L. Soo, G. Held, K. Suenaga, T. Li, H.-Y.T. Chen, S.C.E. Tsang, J. Am. Chem. Soc. 143 (2021) 9105–9112.
    [8]
    P. Li, Y. Dong, Y. Ding, H. Zhang, M. Yang, H. Cheng, Int. J. Hydrogen Energy 46 (2021) 3945–3953.
    [9]
    M. Boudart, M.A. Vannice, J.E. Benson, Z. Phys. Chem. 64 (1969) 171–177.
    [10]
    A. Sihag, Z.-L. Xie, H.V. Thang, C.-L. Kuo, F.-G. Tseng, M.S. Dyer, H.-Y.T. Chen, J. Phys. Chem. C 123 (2019) 25618–25627.
    [11]
    R. Prins, Chem. Rev. 112 (2012) 2714–2738.
    [12]
    N.M. Briggs, L. Barrett, E.C. Wegener, L.V. Herrera, L.A. Gomez, J.T. Miller, S.P. Crossley, Nat. Commun. 9 (2018) 3827.
    [13]
    J.H. Guo, J.X. Liu, H.B. Wang, H.Y. Liu, G. Chen, Phys. Chem. Chem. Phys. 23 (2021) 2384–2391.
    [14]
    K. Yang, G. Zhou, Appl. Surf. Sci. 536 (2021) 147831.
    [15]
    W. Karim, C. Spreafico, A. Kleibert, J. Gobrecht, J. Vandevondele, Y. Ekinci, J.A. Van Bokhoven, Nature 541 (2017) 68–71.
    [16]
    S.K. Konda, A. Chen, Mater. Today 19 (2016) 100–108.
    [17]
    D.S. Pyle, E.M. Gray, C.J. Webb, Int. J. Hydrogen Energy 41 (2016) 19098–19113.
    [18]
    S.-U. Rather, Int. J. Hydrogen Energy 46 (2021) 17793–17801.
    [19]
    K. Taniya, H. Jinno, M. Kishida, Y. Ichihashi, S. Nishiyama, J. Catal. 288 (2012) 84–91.
    [20]
    J.B. You, S.Y. Kim, Y.J. Park, Y.G. Ko, S.G Im, Langmuir 30 (2014) 916–921.
    [21]
    W. Zhou, Y. Zhao, Y. Wang, S. Wang, X. Ma, ChemCatChem 8 (2016) 3663–3671.
    [22]
    W.C. Conner, J.L. Falconer, Chem. Rev. 95 (1995) 759–788.
    [23]
    K. Gu, F. Wei, Y. Cai, S. Lin, H. Guo, J. Phys. Chem. Lett. 12 (2021) 8423–8429.
    [24]
    Y. Yamazaki, K. Mori, Y. Kuwahara, H. Kobayashi, H. Yamashita, ACS Appl. Mater. Interfaces 13 (2021) 48669–48678.
    [25]
    M. Choi, S. Yook, H. Kim, ChemCatChem 7 (2015) 1048–1057.
    [26]
    W. Curtis Conner, G.M. Pajonk, S.J. Teichner, in: D.D. Eley, H. Pines, P.B. Weisz (Eds.), Advances in Catalysis, vol. 34, Academic Press, 1986, pp. 1–79.
    [27]
    I. Abbas, H. Kim, C.-H. Shin, S. Yoon, K.-D. Jung, Appl. Catal. B Environ. 258 (2019) 117971.
    [28]
    S.K. Beaumont, S. Alayoglu, C. Specht, N. Kruse, G.A. Somorjai, Nano Lett. 14 (2014) 4792–4796.
    [29]
    L.R. Merte, G.W. Peng, R. Bechstein, F. Rieboldt, C.A. Farberow, L.C. Grabow, W. Kudernatsch, S. Wendt, E. Laegsgaard, M. Mavrikakis, F. Besenbacher, Science 336 (2012) 889–893.
    [30]
    M.D. Marcinkowski, A.D. Jewell, M. Stamatakis, M.B. Boucher, E.A. Lewis, C.J. Murphy, G. Kyriakou, E.C.H. Sykes, Nat. Mater. 12 (2013) 523–528.
    [31]
    J. Im, H. Shin, H. Jang, H. Kim, M. Choi, Nat. Commun. 5 (2014) 3370.
    [32]
    S.S.E. Collins, M. Cittadini, C. Pecharroman, A. Martucci, P. Mulvaney, ACS Nano 9 (2015) 7846–7856.
    [33]
    R. Prins, V.K. Palfi, M. Reiher, J. Phys. Chem. C 116 (2012) 14274–14283.
    [34]
    D.V. Esposito, I. Levin, T.P. Moffat, A.A. Talin, Nat. Mater. 12 (2013) 562–568.
    [35]
    P. Viet Hung, D. Thanh Truong, K. Singh, S.H. Hur, E.W. Shin, J.S. Kim, M.A. Lee, S.H. Baeck, J.S. Chung, J. Mater. Chem. A 1 (2013) 1070–1077.
    [36]
    Y. Gao, E. Hu, G. Yin, Z. Huang, Fuel 302 (2021) 121142.
    [37]
    R.R. Fan, Z.Q. Li, Y. Wang, Y. Wang, Z.Y. Ding, C. Zhang, N. Kang, X. Guo, R. Wang, Environ. Sci. Pollut. Res. 29 (2021) 5282–5294.
    [38]
    Y.F. Ma, X.H. Zhang, L.N. Cao, J.L. Lu, Catal. Sci. Technol. 11 (2021) 2844–2851.
    [39]
    X. Wu, W. Li, S. Sheng, L. Zhu, L. Yuan, J. Liu, S. Jin, Z. Zhang, Electrochem. Commun. 129 (2021) 107085.
    [40]
    D. Messou, V. Bernardin, F. Meunier, M.B. Ordoño, A. Urakawa, B.F. Machado, V. Collière, R. Philippe, P. Serp, C. Le Berre, J. Catal. 398 (2021) 14–28.
    [41]
    K. Mori, N. Hashimoto, N. Kamiuchi, H. Yoshida, H. Kobayashi, H. Yamashita, Nat. Commun. 12 (2021) 3884.
    [42]
    F. Yang, B. Hu, W. Xia, B. Peng, J. Shen, M. Muhler, J. Catal. 365 (2018) 55–62.
    [43]
    R. Asatryan, E. Ruckenstein, Catal. Lett. 146 (2016) 398–423.
    [44]
    S. Alayoglu, K. An, G. Melaet, S. Chen, F. Bernardi, L.W. Wang, A.E. Lindeman, N. Musselwhite, J. Guo, Z. Liu, M.A. Marcus, G.A. Somorjai, J. Phys. Chem. C 117 (2013) 26608–26616.
    [45]
    W. Karim, A. Kleibert, U. Hartfelder, A. Balan, J. Gobrecht, J.A. Van Bokhoven, Y. Ekinci, Sci. Rep. 6 (2016) 18818.
    [46]
    A.J. Fernández-Ropero, B. Zawadzki, E. Kowalewski, I.S. Pieta, M.Krawczyk,K.Matus,D.Lisovytskiy,A.Śrębowata,Catalysts11(2021) 501.
    [47]
    M.M. Bettahar, Molecular Catalysis 502 (2021) 111338.
    [48]
    H.-Y.T. Chen, S. Tosoni, G. Pacchioni, ACS Catal. 5 (2015) 5486–5495.
    [49]
    F. Ahmed, M.K. Alam, A. Suzuki, M. Koyama, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, C.A. Del Carpio, M. Kubo, A. Miyamoto, J. Phys. Chem. C 113 (2009) 15676–15683.
    [50]
    C.T. Wang, E. Guan, L. Wang, X.F. Chu, Z.Y. Wu, J. Zhang, Z.Y. Yang, Y.W. Jiang, L. Zhang, X.J. Meng, B.C. Gates, F.S. Xiao, J. Am. Chem. Soc. 141 (2019) 8482–8488.
    [51]
    D. Nabaho, J.W. Niemantsverdriet, M. Claeys, E. Van Steen, Catal. Today 261 (2016) 17–27.
    [52]
    B.S. K, A. Selim, S. Colin, K. Norbert, S.G. A, Nano Lett. 14 (2014) 4792–4796.
    [53]
    C. Spreafico, W. Karim, Y. Ekinci, J.A. Van Bokhoven, J. Vandevondele, J. Phys. Chem. C 121 (2017) 17862–17872.
    [54]
    M.M. Bettahar, Catal. Rev. 62 (2020) 87–125.
    [55]
    M. Choi, S. Yook, H. Kim, ChemCatChem 7 (2015) 1048–1057.
    [56]
    R. Prins, V.K. Palfi, M. Reiher, Abstr. Pap. Am. Chem. Soc. 243 (2012).
    [57]
    T.N. Phaahlamohlaka, M.W. Dlamini, D.O. Kumi, R. Forbes, L.L. Jewell, N.J. Coville, Appl. Catal. Gen. 599 (2020) 117617.
    [58]
    J.L. Lu, B.S. Fu, M.C. Kung, G.M. Xiao, J.W. Elam, H.H. Kung, P.C. Stair, Science 335 (2012) 1205–1208.
    [59]
    M. Xiong, Z. Gao, P. Zhao, G.F. Wang, W.J. Yan, S.F. Xing, P.F. Wang, J.Y. Ma, Z. Jiang, X.C. Liu, J.P. Ma, J. Xu, Y. Qin, Nat. Commun. 11 (2020) 4773.
    [60]
    M. Xiong, Z. Gao, Y. Qin, ACS Catal. 11 (2021) 3159–3172.
    [61]
    M. Filez, E.A. Redekop, V.V. Galvita, H. Poelman, M. Meledina, S. Turner, G. Van Tendeloo, A.T. Bell, G.B. Marin, Phys. Chem. Chem. Phys. 18 (2016) 3234–3243.
    [62]
    J. Li, C. Jin, R. Qian, C. Wu, Y. Wang, Y. Yan, Y. Chen, Prog. Nat. Sci.: Mater. Int. 31 (2021) 514–520.
    [63]
    H. Chen, L. Wang, J. Yang, R.T. Yang, J. Phys. Chem. C 117 (2013) 7565–7576.
    [64]
    B.D. Adams, C.K. Ostrom, S. Chen, A. Chen, J. Phys. Chem. C 114 (2010) 19875–19882.
    [65]
    Y. Liu, W. Cen, G. Feng, Y. Chu, D. Kong, H. Yin, Appl. Surf. Sci. 313 (2014) 424–431.
    [66]
    Y. Zhou, J. Wang, L. Liang, Q. Sai, J. Ni, C.-T. Au, X. Lin, X. Wang, Y. Zheng, L. Zheng, L. Jiang, J. Catal. 404 (2021) 501–511.
    [67]
    X.Y. Li, J. Lin, L. Li, Y.K. Huang, X.L. Pan, S.E. Collins, Y.J. Ren, Y. Su, L.L. Kang, X.Y. Liu, Y.L. Zhou, H. Wang, A.Q. Wang, B.T. Qiao, X.D. Wang, T. Zhang, Angew. Chem. Int. Ed. 59 (2020) 19983–19989.
    [68]
    Z. Yao, L. Li, X. Liu, K.N. Hui, L. Shi, F. Zhou, M. Hu, K.S. Hui, J. Hazard Mater. 406 (2021) 124327.
    [69]
    Z.Hu,T.Zhang,D.Li,R.T.Yang,Catal.Sci.Technol.11(2021)886–894.
    [70]
    A.B. Lende, S. Bhattacharjee, C.-S. Tan, ACS Sustain. Chem. Eng. 9 (2021) 7224–7234.
    [71]
    P. Li, G. Zhao, P. Cui, N. Cheng, M. Lao, X. Xu, S.X. Dou, W. Sun, Nano Energy 83 (2021) 105850.
    [72]
    J.H. Guo, H. Zhang, Y. Tang, X. Cheng, Phys. Chem. Chem. Phys. 15 (2013) 2873–2881.
    [73]
    C.-Y. Wang, J.L. Gray, Q. Gong, Y. Zhao, J. Li, E. Klontzas, G. Psofogiannakis, G. Froudakis, A.D. Lueking, J. Phys. Chem. C 118 (2014) 26750–26763.
    [74]
    T.Y. Chung, C.S. Tsao, H.P. Tseng, C.H. Chen, M.S. Yu, Y. Colloid Interface Sci. 441 (2015) 98–105.
    [75]
    Y. Shao, H.C. Zeng, ACS Appl. Nano Mater. 4 (2021) 6030–6044.
    [76]
    Z. Geng, D. Wang, C. Zhang, X. Zhou, H. Xin, X. Liu, M. Cai, Int. J. Hydrogen Energy 39 (2014) 13643–13649.
    [77]
    Z. Peng, Z. Li, Y.Q. Liu, S. Yan, J. Tong, D. Wang, Y. Ye, S. Li, Chem. Commun. 53 (2017) 5958–5961.
    [78]
    Rajbala, D. Bhatia, Catal. Today 360 (2021) 263–274.
    [79]
    L. Wang, R.T. Yang, J. Phys. Chem. C 112 (2008) 12486–12494.
    [80]
    X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita, Q. Xu, J. Am. Chem. Soc. 133 (2011) 11822–11825.
    [81]
    J.-H. Guo, X.-D. Li, X.-L. Cheng, H.-Y. Liu, S.-J. Li, G. Chen, Int. J. Hydrogen Energy 43 (2018) 19121–19129.
    [82]
    Z. Gao, Y. Qin, Acc. Chem. Res. 50 (2017) 2309–2316.
    [83]
    F.R. Lucci, M.T. Darby, M.F.G. Mattera, C.J. Ivimey, A.J. Therrien, A. Michaelides, M. Stamatakis, E.C.H. Sykes, J. Phys. Chem. Lett. 7 (2016) 480–485.
    [84]
    T. Huizinga, R. Prins, J. Phys. Chem. 85 (1981) 2156–2158.
    [85]
    C. Sricharoen, B. Jongsomjit, J. Panpranot, P. Praserthdam, Catal. Today 375 (2021) 343–351.
    [86]
    G. Kyriakou, M.B. Boucher, A.D. Jewell, E.A. Lewis, T.J. Lawton, A.E. Baber, H.L. Tierney, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Science 335 (2012) 1209–1212.
    [87]
    Meyers Miller, Lane Modica, Koningsberger Vaarkamp, Academic Press, 1993, pp. 143.
    [88]
    R. Van Lent, S.V. Auras, K. Cao, A.J. Walsh, M.A. Gleeson, L.B.F. Juurlink, Science 363 (2019) 155–157.
    [89]
    J. Wei, S.N. Qin, J.L. Liu, X.Y. Ruan, Z.Q. Guan, H. Yan, D.Y. Wei, H. Zhang, J. Cheng, H.X. Xu, Z.Q. Tian, J.F. Li, Angew. Chem. Int. Ed. 59 (2020) 10343–10347.
    [90]
    G.N. Vayssilov, B.C. Gates, N. Rösch, Angew. Chem. Int. Ed. 42 (2003) 1391–1394.
    [91]
    H. Zhang, X.-G. Zhang, J. Wei, C. Wang, S. Chen, H.-L. Sun, Y.- H. Wang, B.-H. Chen, Z.-L. Yang, D.-Y. Wu, J.-F. Li, Z.-Q. Tian, J. Am. Chem. Soc. 139 (2017) 10339–10346.
    [92]
    K. Murakami, Y. Sekine, Phys. Chem. Chem. Phys. 22 (2020) 22852–22863.
    [93]
    X. Yan, B. Xu, X. Yang, J. Wei, B. Yang, L. Zhao, G. Yang, Appl. Catal. B Environ. 256 (2019) 117812.
    [94]
    R. Kramer, M. Andre, J. Catal. 58 (1979) 287–295.
    [95]
    B. Hu, Y. Yin, G. Liu, S. Chen, X. Hong, S.C.E. Tsang, J. Catal. 359 (2018) 17–26.
    [96]
    D. Xu, X. Hong, G. Liu, J. Catal. 393 (2020) 207–214.
    [97]
    H. Gao, F. Liu, D. Xue, R. Han, F. Li, React. Kinet. Mech. Catal. 124 (2018) 891–903.
    [98]
    M. Zhou, H. Zhang, H. Ma, W. Ying, Fuel 203 (2017) 774–780.
    [99]
    Y. Yao, D.W. Goodman, J. Mol. Catal. Chem. 383–384 (2014) 239–242.
    [100]
    Z. Li, H. Hao, J. Lu, C. Wu, R. Gao, J. Li, C.-L. Liu, W.-S. Dong, J. Energy Chem. 61 (2021) 446–458.
    [101]
    Y. Yao, Z. Yan, L. Chen, Z. Zhou, L. Liu, D.W. Goodman, Catal. Lett. 142 (2012) 1437–1444.
    [102]
    G. Anger, A. Winkler, K.D. Rendulic, Surf. Sci. Lett. 220 (1989) A467.
    [103]
    Y. Lykhach, T. Staudt, M. Vorokhta, T. Skála, V. Johánek, K.C. Prince, V. Matolín, J. Libuda, J. Catal. 285 (2012) 6–9.
    [104]
    Y. Lykhach, J. Kubat, A. Neitzel, N. Tsud, M. Vorokhta, T. Skala, F. Dvorak, Y. Kosto, K.C. Prince, V. Matolin, V. Johanek, J. Myslivecek, J. Libuda, J. Chem. Phys. 151 (2019) 204703.
    [105]
    G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J.Z. Zhang, Y. Li, Energy Environ. Sci. 5 (2012) 6180–6187.
    [106]
    H. Yoon, M. Choi, T.-W. Lim, H. Kwon, K. Ihm, J.K. Kim, S.-Y. Choi, J. Son, Nat. Mater. 15 (2016) 1113–1119.
    [107]
    H. Yoon, J. Park, S.-Y. Choi, D. Lee, J. Son, Adv. Electron. Mater. 4 (2018) 1800128.
    [108]
    Y. Filinchuk, N.A. Tumanov, V. Ban, H. Ji, J. Wei, M.W. Swift, A.H. Nevidomskyy, D. Natelson, J. Am. Chem. Soc. 136 (2014) 8100–8109.
    [109]
    H. Jeen, W.S. Choi, M.D. Biegalski, C.M. Folkman, I.C. Tung, D.D. Fong, J.W. Freeland, D. Shin, H. Ohta, M.F. Chisholm, H.N. Lee, Nat. Mater. 12 (2013) 1057–1063.
    [110]
    S. Hu, J. Seidel, Nanotechnology 27 (2016) 325301.
    [111]
    L. Bartha, A.B. Kiss, T. Szalay, in: L. Bartha, E. Lassner, W.D. Schubert, B. Lux (Eds.), The Chemistry of Non-sag Tungsten, Pergamon, Oxford, 1995, pp. 77–91.
    [112]
    F.J. Castro, F. Tonus, J.-L. Bobet, G. Urretavizcaya, J. Alloys Compd. 495 (2010) 537–540.
    [113]
    C. Mao, J. Wang, Y. Zou, G. Qi, J.Y. Yang Loh, T. Zhang, M. Xia, J. Xu, F. Deng, M. Ghoussoub, N.P. Kherani, L. Wang, H. Shang, M. Li, J. Li, X. Liu, Z. Ai, G.A. Ozin, J. Zhao, L. Zhang, J. Am. Chem. Soc. 142 (2020) 17403–17412.
    [114]
    N. Doudin, S.F. Yuk, M.D. Marcinkowski, M.-T. Nguyen, J.-C. Liu, Y. Wang, Z. Novotny, B.D. Kay, J. Li, V.-A. Glezakou, G. Parkinson, R. Rousseau, Z. Dohnálek, ACS Catal. 9 (2019) 7876–7887.
    [115]
    H. Chen, W. Bai, Y. He, L.D. Pfefferle, S. Qi, Y. Wu, Ind. Eng. Chem. Res. 57 (2018) 16272–16283.
    [116]
    G. Feng, M.V. Ganduglia-Pirovano, C.-F. Huo, J. Sauer, J. Phys. Chem. C 122 (2018) 18445–18455.
    [117]
    F. Orlando, A. Waldner, T. Bartels-Rausch, M. Birrer, S. Kato, M.- T. Lee, C. Proff, T. Huthwelker, A. Kleibert, J. Van Bokhoven, M. Ammann, Top. Catal. 59 (2016) 591–604.
    [118]
    K. Shunsuke, A. Markus, H. Thomas, P. Cristina, L. Markus, L. MingTao, R. Matthäus, J.A. van Bokhoven, Phys. Chem. Chem. Phys. 17 (2015) 5078–5083.
    [119]
    Z. Ma, X. Meng, N. Liu, L. Shi, Mol. Catal. 449 (2018) 114–121.
    [120]
    H. Yin, L.-Q. Zheng, W. Fang, Y.-H. Lai, N. Porenta, G. Goubert, H. Zhang, H.-S. Su, B. Ren, J.O. Richardson, J.-F. Li, R. Zenobi, Nat. Catal. 3 (2020) 834–842.
    [121]
    C.-S. Tsao, Y. Liu, H.-Y. Chuang, H.-H. Tseng, T.-Y. Chen, C.-H. Chen, M.-S. Yu, Q. Li, A. Lueking, S.-H. Chen, J. Phys. Chem. Lett. 2 (2011) 2322–2325.
    [122]
    M. Carosso, A. Lazzarini, A. Piovano, R. Pellegrini, S. Morandi, M. Manzoli, J.G. Vitillo, M.J. Ruiz, C. Lamberti, E. Groppo, Faraday Discuss 208 (2018) 227–242.
    [123]
    L. Kuai, Z. Chen, S. Liu, E. Kan, N. Yu, Y. Ren, C. Fang, X. Li, Y. Li, B. Geng, Nat. Commun. 11 (2020) 48.
    [124]
    S. Campisi, C.E. Chan-Thaw, L.E. Chinchilla, A. Chutia, G.A. Botton, K.M.H. Mohammed, N. Dimitratos, P.P. Wells, A. Villa, ACS Catal. 10 (2020) 5483–5492.
    [125]
    X. Xue, J. Liu, D. Rao, S. Xu, W. Bing, B. Wang, S. He, M. Wei, Catal. Sci. Technol. 7 (2017) 650–657.
    [126]
    T. Franken, J. Terreni, A. Borgschulte, A. Heel, J. Catal. 382 (2020) 385–394.
    [127]
    Y. Guo, S. Mei, K. Yuan, D.-J. Wang, H.-C. Liu, C.-H. Yan, Y.- W. Zhang, ACS Catal. 8 (2018) 6203–6215.
    [128]
    Q. Su, L. Gu, Y. Yao, J. Zhao, W. Ji, W. Ding, C.-T. Au, Appl. Catal. B Environ. 201 (2017) 451–460.
    [129]
    G. Li, Z. Pan, H. Lin, L. An, J. Alloys Compd. 875 (2021) 160006.
    [130]
    J. Huang, M. Yuan, X. Li, Y. Wang, M. Li, J. Li, Z. You, Appl. Catal. Gen. 615 (2021) 118058.
    [131]
    P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, T.P. Maniecki, Appl. Catal. Gen. 479 (2014) 26–34.
    [132]
    J.-H. Guo, D.-D. Liu, X.-D. Li, H.-Y. Liu, G. Chen, Int. J. Hydrogen Energy 43 (2018) 2247–2255.
    [133]
    A. Aitbekova, E.D. Goodman, L. Wu, A. Boubnov, A.S. Hoffman, A. Genc, H. Cheng, L. Casalena, S.R. Bare, M. Cargnello, Angew. Chem. Int. Ed. 58 (2019) 17451–17457.
    [134]
    S. Masuda, K. Shun, K. Mori, Y. Kuwahara, H. Yamashita, Chem. Sci. 11 (2020) 4194–4203.
    [135]
    S. Miyoshi, Y. Akao, N. Kuwata, J. Kawamura, Y. Oyama, T. Yagi, S. Yamaguchi, Chem. Mater. 26 (2014) 5194–5200.
    [136]
    S.Ø. Stub, E. Vøllestad, T. Norby, J. Phys. Chem. C 121 (2017) 12817–12825.
    [137]
    B.-R. Huang, D. Kathiravan, A. Saravanan, P.-H. Mai, ACS Appl. Nano Mater. 4 (2021) 2840–2848.
    [138]
    I.K. Cheng, C.-Y. Lin, F.-M. Pan, Appl. Surf. Sci. 541 (2021) 148551.
    [139]
    P. Carraro, V. Elías, A.a.G. Blanco, K. Sapag, G. Eimer, M. Oliva, Int. J. Hydrogen Energy 39 (2014) 8749–8753.
    [140]
    N. Yodsin, H. Sakagami, T. Udagawa, T. Ishimoto, S. Jungsuttiwong, M. Tachikawa, Mol. Catal. 504 (2021) 111486.
    [141]
    J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energy 44 (2019) 15072–15086.
    [142]
    M. Li, Y. Bai, C. Zhang, Y. Song, S. Jiang, D. Grouset, M. Zhang, Int. J. Hydrogen Energy 44 (2019) 10677–10693.
    [143]
    R. Shi, H.X. Yan, J.G. Zhang, H.G. Gao, Y.F. Zhu, Y.N. Liu, X.H. Hu, Y. Zhang, L.Q. Li, Small 17 (2021) 2100852.
    [144]
    T. He, P. Pachfule, H. Wu, Q. Xu, P. Chen, Nat. Rev. Mater. 1 (2016) 16059.
    [145]
    S. Pevzner, I. Pri-Bar, I. Lutzky, E. Ben-Yehuda, E. Ruse, O. Regev, J. Phys. Chem. C 118 (2014) 27164–27169.
    [146]
    T.-Y. Chung, C.-S. Tsao, H.-P. Tseng, C.-H. Chen, M.-S. Yu, J. Colloid Interface Sci. 441 (2015) 98–105.
    [147]
    H. Yoon, Y. Kim, E.J. Crumlin, D. Lee, K. Ihm, J. Son, J. Phys. Chem. Lett. 10 (2019) 7285–7292.
    [148]
    M.Y. Aslan, D. Uner, Int. J. Hydrogen Energy 44 (2019) 18903–18914.
    [149]
    C.-Y. Wang, C.-W. Chang, Y.-J. Wu, A.D. Lueking, Curr. Opin. Chem. Eng. 21 (2018) 116–121.
    [150]
    S.S. Samantaray, V. Sangeetha, S. Abinaya, S. Ramaprabhu, Int. J. Hydrogen Energy 43 (2018) 8018–8025.
    [151]
    H. Zhou, J. Zhang, D. Ji, A. Yuan, X. Shen, Microporous Mesoporous Mater. 229 (2016) 68–75.
    [152]
    D. Silambarasan, V.J. Surya, V. Vasu, K. Iyakutti, ACS Appl. Mater. Interfaces 5 (2013) 11419–11426.
    [153]
    K.P. Brooks, T.A. Semelsberger, K.L. Simmons, B. Van Hassel, J. Power Sources 268 (2014) 950–959.
    [154]
    L. Han, W. Qin, J. Jian, J. Liu, X. Wu, P. Gao, B. Hultman, G. Wu, J. Power Sources 358 (2017) 93–100.
    [155]
    H.S. Cheng, L. Chen, A.C. Cooper, X.W. Sha, G.P. Pez, Energy Environ. Sci. 1 (2008) 338–354.
    [156]
    S. Srinivasan, D.E. Demirocak, A. Kaushik, M. Sharma, G.R. Chaudhary, N. Hickman, E. Stefanakos, Appl. Sci. 10 (2020) 4618.
    [157]
    E. Ruse, S. Pevzner, I. Pri Bar, R. Nadiv, V.M. Skripnyuk, E. Rabkin, O. Regev, Int. J. Hydrogen Energy 41 (2016) 2814–2819.
    [158]
    S. Nachimuthu, P.-J. Lai, J.-C. Jiang, Carbon 73 (2014) 132–140.
    [159]
    G.M. Psofogiannakis, G.E. Froudakis, J. Phys. Chem. C 115 (2011) 4047–4053.
    [160]
    A.A. Ensafi, M. Jafari-Asl, A. Nabiyan, B. Rezaei, M. Dinari, Energy 99 (2016) 103–114.
    [161]
    X.-Y. Liu, J.-X. Yu, X.-D. Li, G.-C. Liu, X.-F. Li, J.-K. Lee, Chin. Phys. B 26 (2017) 027302.
    [162]
    Y. Li, F.H. Yang, R.T. Yang, J. Phys. Chem. C 111 (2007) 3405–3411.
    [163]
    T.K. Das, S. Banerjee, M. Pandey, B. Vishwanadh, R.J. Kshirsagar, V. Sudarsan, Int. J. Hydrogen Energy 42 (2017) 8032–8041.
    [164]
    M. Blanco-Rey, J.I. Juaristi, M. Alducin, M.J. López, J.A. Alonso, J. Phys. Chem. C 120 (2016) 17357–17364.
    [165]
    R. Akbarzadeh, M. Ghaedi, S.N. Kokhdan, D. Vashaee, Dalton Trans. 48 (2019) 898–907.
    [166]
    I. López-Corral, B. Irigoyen, A. Juan, Int. J. Hydrogen Energy 39 (2014) 8780–8790.
    [167]
    A.F.M. El-Mandy, C. Young, J. Kim, J. You, Y. Yamauchi, S.-W. Kuo, ACS Appl. Mater. Interfaces 11 (2019) 9343–9354.
    [168]
    X.-D. Li, Y. Zhang, J.-H. Guo, S.-Q. Yu, D.-W. Du, Int. J. Hydrogen Energy 44 (2019) 8357–8364.
    [169]
    A. Klechikov, J. Sun, G. Hu, M. Zheng, T. Wagberg, A.V. Talyzin, Microporous Mesoporous Mater. 250 (2017) 27–34.
    [170]
    W.W. Lestari, Larasati, H. Suwarno, U.S.F. Arrozi, Mater. Res. Express 6 (2019) 084001.
    [171]
    J.-H. Guo, S.-J. Li, Y. Su, G. Chen, Int. J. Hydrogen Energy 45 (2020) 25900–25911.
    [172]
    E.M. Kumar, S. Sinthika, R. Thapa, J. Mater. Chem. A 3 (2015) 304–313.
    [173]
    R. Juarez-Mosqueda, A. Mavrandonakis, A.B. Kuc, L.G.M. Pettersson, T. Heine, Front. Chem. 3 (2015) 2.
    [174]
    N. Thaweelap, P. Plerdsranoy, Y. Poo-Arporn, P. Khajondetchairit, S. Suthirakun, I. Fongkaew, P. Hirunsit, N. Chanlek, O. Utke, A. Pangon, R. Utke, Fuel 288 (2021) 119608.
    [175]
    S. Shang, X. Yang, X.-M. Tao, Polymer 50 (2009) 2815–2818.
    [176]
    S.U. Rather, Int. J. Hydrogen Energy 45 (2020) 4653–4672.
    [177]
    M. Konni, A.S. Dadhich, S.B. Mukkamala, Nano-Struct. Nano-Objects 18 (2019) 100304.
    [178]
    L. Wei, Y. Mao, Int. J. Hydrogen Energy 41 (2016) 11692–11699.
    [179]
    M. Konni, A.S. Dadhich, S.B. Mukkamala, Sustain. Energy Fuels 2 (2018) 466–471.
    [180]
    S. Mukherjee, B. Ramalingam, S. Gangopadhyay, J. Mater. Chem. A 2 (2014) 3954–3960.
    [181]
    E.M.G. Darryl, S. Pyle, C.J. Webb, Science (Wash. D C) (2020).
    [182]
    P. Singh, M.V. Kulkarni, S.P. Gokhale, S.H. Chikkali, C.V. Kulkarni, Appl. Surf. Sci. 258 (2012) 3405–3409.
    [183]
    H. Wang, H. Dai, Chem. Soc. Rev. 42 (2013) 3088–3113.
    [184]
    L. Han, W. Qin, J. Zhou, J.H. Jian, S.T. Lu, X.H. Wu, G.H. Fan, P. Gao, B.Y. Liu, Nanoscale 9 (2017) 5141–5147.
    [185]
    Z. Wu, Y. Duan, S. Ge, A.C.K. Yip, F. Yang, Y. Li, T. Dou, Catal. Commun. 91 (2017) 10–15.
    [186]
    A. Granja-Delrio, M. Alducin, J.I. Juaristi, M.J. Lopez, J.A. Alonso, Appl. Surf. Sci. 559 (2021) 149835.
    [187]
    S. Kaskun, Y. Akinay, M. Kayfeci, Int. J. Hydrogen Energy 45 (2020) 34949–34955.
    [188]
    N. Yodsin, C. Rungnim, V. Promarak, S. Namuangruk, N. Kungwan, R. Rattanawan, S. Jungsuttiwong, Phys. Chem. Chem. Phys. 20 (2018) 21194–21203.
    [189]
    Z. Wang, F.H. Yang, R.T. Yang, J. Phys. Chem. C 114 (2010) 1601–1609.
    [190]
    R. Zacharia, S.-U. Rather, S.W. Hwang, K.S. Nahm, Chem. Phys. Lett. 434 (2007) 286–291.
    [191]
    L. Yang, L.L. Yu, H.W. Wei, W.Q. Li, X. Zhou, W.Q. Tian, Int. J. Hydrogen Energy 44 (2019) 2960–2975.
    [192]
    R. Bhowmick, S. Rajasekaran, D. Friebel, C. Beasley, L. Jiao, H. Ogasawara, H. Dai, B. Clemens, A. Nilsson, J. Am. Chem. Soc. 133 (2011) 5580–5586.
    [193]
    L. Wang, R.T. Yang, Energy Environ. Sci. 1 (2008) 268–279.
    [194]
    S.U. Rather, Int. J. Hydrogen Energy 42 (2017) 11553–11559.
    [195]
    Y.J. Han, S.J. Park, Appl. Surf. Sci. 415 (2017) 85–89.
    [196]
    S.U. Rather, Int. J. Hydrogen Energy 44 (2019) 325–331.
    [197]
    J.A. Villajos, G. Orcajo, G. Calleja, J.A. Botas, C. Martos, Int. J. Hydrogen Energy 41 (2016) 19439–19446.
    [198]
    A.K. Adhikari, K.-S. Lin, C.-S. Chang, Res. Chem. Intermed. 41 (2015) 7655–7677.
    [199]
    C.-S. Tsao, M.-S. Yu, C.-Y. Wang, P.-Y. Liao, H.-L. Chen, U.S. Jeng, Y.- R. Tzeng, T.-Y. Chung, H.-C. Wu, J. Am. Chem. Soc. 131 (2009) 1404–1406.
    [200]
    P.L. Bora, R. Ahmad, A.K. Singh, Int. J. Hydrogen Energy 40 (2015) 1054–1061.
    [201]
    A.J. Lachawiec, G. Qi, R.T. Yang, Langmuir 21 (2005) 11418–11424.
    [202]
    Y.E. Cheon, M.P. Suh, Angew. Chem. Int. Ed. 48 (2009) 2899–2903.
    [203]
    Y. Li, R.T. Yang, AIChE J. 54 (2008) 269–279.
    [204]
    Y. Li, R.T. Yang, J. Am. Chem. Soc. 128 (2006) 726–727.
    [205]
    S.N. Klyamkin, S.V. Chuvikov, N.V. Maletskaya, E.V. Kogan, V.P. Fedin, K.A. Kovalenko, D.N. Dybtsev, Int. J. Energy Res. 38 (2014) 1562–1570.
    [206]
    J.R. Varghese, C. Wendt, F.B. Dix, D. Aulakh, U. Sazama, A.A. Yakovenko, M. Fröba, J. Wochnowski, D.V. Goia, M. Wriedt, Inorg. Chem. 60 (2021) 13000–13010.
    [207]
    H. Zhou, J. Zhang, J. Zhang, X.-F. Yan, X.-P. Shen, A.-H. Yuan, Inorg. Chem. Commun. 54 (2015) 54–56.
    [208]
    Y. Li, R.T. Yang, J. Am. Chem. Soc. 128 (2006) 8136–8137.
    [209]
    C.-S.T. Cheng-Yu Wanga, C,*, Ming-Sheng Yua, Pin-Yen Liaoa, TsuiYun Chunga, M.a.M. Hsiu-Chu Wua, Tzenga Yi-Ren, J. Alloys Compd. (2010).
    [210]
    K.-S. Lin, A.K. Adhikari, Y.-H. Su, C.-W. Shu, H.-Y. Chan, Adsorption 18 (2012) 483–491.
    [211]
    A.K. Adhikari, K.-S. Lin, C.-S. Chang, Res. Chem. Intermed. 41 (2015) 7655–7667.
    [212]
    J. Kim, S. Yeo, J.-D. Jeon, S.-Y. Kwak, Microporous Mesoporous Mater. 202 (2015) 8–15.
    [213]
    A.P. Côté, H.M. El-Kaderi, H. Furukawa, J.R. Hunt, O.M. Yaghi, J. Am. Chem. Soc. 129 (2017) 12914–12915.
    [214]
    J.R. Hunt, C.J. Doonan, J.D. LeVangie, A.P. Côté, O.M. Yaghi, J Am. Chem. Soc. 130 (2008) 11872–11873.
    [215]
    E.L. Spitler, W.R. Dichtel, Nat. Chem. 2 (2010) 672–677.
    [216]
    A.P. Co\widehat té, A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, O.M. Yaghi, Science 310 (2005) 1166–1170.
    [217]
    J.-H. Guo, X.-L. Cheng, S.-J. Li, G. Chen, J. Phys. Chem. C 120 (2016) 17153–17164.
    [218]
    E. Ganz, M. Dornfeld, J. Phys. Chem. C 116 (2012) 3661–3666.
    [219]
    J.-H. Guo, X.-D. Li, H.-Y. Liu, S.-J. Li, G. Chen, J. Phys. Chem. C 123 (2019) 15935–15943.
    [220]
    H.-Y. Wu, X. Fan, J.-L. Kuo, W.-Q. Deng, J. Phys. Chem. C 115 (2011) 9241–9249.
    [221]
    X.M. Liu, S.-U. Rather, Q. Li, A. Lueking, Y. Zhao, J. Li, J. Phys. Chem. C 116 (2012) 3477–3485.
    [222]
    J. Zhang, Z. Gao, S. Wang, G. Wang, X. Gao, B. Zhang, S. Xing, S. Zhao, Y. Qin, Nat. Commun. 10 (2019) 4166.
    [223]
    J.H. Liu, T. Ding, H. Zhang, G.C. Li, J.M. Cai, D.Y. Zhao, Y. Tian, H. Xian, X.Q. Bai, X.G. Li, Catal. Sci. Technol. 8 (2018) 4934–4944.
    [224]
    Y.K. Jin, G.H. Sun, F. Xiong, L.B. Ding, W.X. Huang, Chem. Eur. J. 21 (2015) 4252–4256.
    [225]
    N. Karanwal, M.G. Sibi, M.K. Khan, A.A. Myint, B. Chan Ryu, J.W. Kang, J. Kim, ACS Catal. 11 (2021) 2846–2864.
    [226]
    S. Wang, Z.J. Zhao, X. Chang, J.B. Zhao, H. Tian, C.S. Yang, M.R. Li, Q. Fu, R.T. Mu, J.L. Gong, Angew. Chem. Int. Ed. 58 (2019) 7668–7672.
    [227]
    A.C. Ghogia, S. Cayez, B.F. Machado, A. Nzihou, P. Serp, K. Soulantica, M. Doan Pham, ChemCatChem 12 (2020) 1117–1128.
    [228]
    M.A. Keane, M. Li, L. Collado, F. Cárdenas-Lizana, React. Kinet. Mech. Catal. 125 (2018) 25–36.
    [229]
    J.-S. Jung, J.-S. Lee, G. Choi, S. Ramesh, D.J. Moon, Fuel 149 (2015) 118–129.
    [230]
    D. Panayotov, E. Ivanova, M. Mihaylov, K. Chakarova, T. Spassov, K. Hadjiivanov, Phys. Chem. Chem. Phys. 17 (2015) 20563–20573.
    [231]
    H. Jia, Z. Yang, X. Yun, X. Lei, X. Kong, F. Zhang, Ind. Eng. Chem. Res. 58 (2019) 22702–22708.
    [232]
    P.A. Sermon, G.C. Bond, Catal. Rev.-Sci. Eng. 8 (1974) 211–239.
    [233]
    L. Zan, H. Zhang, X. Bo, Y. Zhao, H. Tian, H. Chen, Q. Wei, H. Tang, F. Fu, J. Alloys Compd. 869 (2021) 159324.
    [234]
    M. Wang, X. Ren, M. Guo, J. Liu, H. Li, Q. Yang, ACS Sustain. Chem. Eng. 9 (2021) 6499–6506.
    [235]
    L. Xiang, G. Fan, L. Yang, L. Zheng, F. Li, J. Catal. 398 (2021) 76–88.
    [236]
    H.J. Kim, C. Song, Energy Fuels 28 (2014) 6788–6792.
    [237]
    A.J. Mccue, C.J. Mcritchie, A.M. Shepherd, J.A. Anderson, J. Catal. 319 (2014) 127–135.
    [238]
    R.T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Chem. Rev. 120 (2020) 12044–12088.
    [239]
    K. Liu, R. Qin, N. Zheng, J. Am. Chem. Soc. 143 (2021) 4483–4499.
    [240]
    N.Y. Lu, J.X. Zhao, Q. Dong, Y.P. Zhao, B.B. Fan, Mol. Catal. 506 (2021) 111543.
    [241]
    J. Li, Q. Gong, H. Lian, L. Ding, Z. Hu, Z. Zhu, J. Catal. 378 (2019) 144–152.
    [242]
    K.R. Liu, P.F. Yan, H. Jiang, Z. Xia, Z.W. Xu, S. Bai, Z.C. Zhang, J. Catal. 369 (2019) 396–404.
    [243]
    X. Chen, J. Liu, W. Zhang, B. Xiao, P. Zhang, L. Li, J. Phys. Chem. C 121 (2017) 17314–17320.
    [244]
    S. Zhang, Z. Xia, M. Zhang, Y. Zou, H. Shen, J. Li, X. Chen, Y. Qu, Appl. Catal. B Environ. 297 (2021) 120418.
    [245]
    S. Zhang, Z. Xia, Y. Zou, M. Zhang, Y. Qu, Nat. Commun. 12 (2021) 3382.
    [246]
    Y. Zhan, C. Zhou, F. Jin, C. Chen, L. Jiang, Appl. Surf. Sci. 525 (2020).
    [247]
    Z. Cao, X. Zhang, R. Guo, S. Ding, J. Mei, X. Wang, P. Zheng, J. Fan, C. Xu, A. Duan, ACS Catal. 10 (2020) 12342–12353.
    [248]
    M. Hu, L. Jin, Y. Zhu, L. Zhang, X. Lu, P. Kerns, X. Su, S. Cao, P. Gao, S.L. Suib, B. Liu, J. He, Appl. Catal. B Environ. 264 (2020) 118553.
    [249]
    E.A. Redina, K.V. Vikanova, G.I. Kapustin, I.V. Mishin, O.P. Tkachenko, L.M. Kustov, Eur. J. Org. Chem. 2019 (2019) 4159–4170.
    [250]
    R. Krishna, D.M. Fernandes, J. Ventura, C. Freire, E. Titus, Int. J. Hydrogen Energy 41 (2016) 11608–11615.
    [251]
    A.J.Mccue,A.Gibson,J.A.Anderson,Chem.Eng.J.285(2016)384–391.
    [252]
    L. Warczinski, C. Hättig, J. Phys. Chem. C 125 (2021) 9020–9031.
    [253]
    M. Zhou, H. Zhang, H. Ma, W. Ying, Ind. Eng. Chem. Res. 56 (2017) 8833–8842.
    [254]
    A. A.A, S. Mondal, S.M. Pudi, N.N. Pandhare, P. Biswas, Energy Fuels 31 (2017) 8521–8533.
    [255]
    H. Zou, J. Dai, J. Suo, R. Ettelaie, Y. Li, N. Xue, R. Wang, H. Yang, Nat. Commun. 12 (2021) 4968.
    [256]
    S. Lee, K. Lee, J. Im, H. Kim, M. Choi, J. Catal. 325 (2015) 26–34.
    [257]
    L. Tan, X. Guo, X. Gao, N. Tsubaki, Catalysts 9 (2019) 766.
    [258]
    S. Goel, Z. Wu, S.I. Zones, E. Iglesia, J. Am. Chem. Soc. 134 (2012) 17688–17695.
    [259]
    Y. Liu, J. Zhao, Y. He, J. Feng, T. Wu, D. Li, J. Catal. 348 (2017) 135–145.
    [260]
    C. Song, Catal. Today 115 (2006) 2–32.
    [261]
    W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev. 40 (2011) 3703–3727.
    [262]
    X. Jia, X. Zhang, N. Rui, X. Hu, C.-J. Liu, Appl. Catal. B Environ. 244 (2019) 159–169.
    [263]
    A. Kim, D.P. Debecker, F. Devred, V. Dubois, C. Sanchez, C. Sassoye, Appl. Catal. B Environ. 220 (2018) 615–625.
    [264]
    Y. Li, S.H. Chan, Q. Sun, Nanoscale 7 (2015) 8663–8683.
    [265]
    Y. Tang, Y. Kobayashi, N. Masuda, Y. Uchida, H. Okamoto, T. Kageyama, S. Hosokawa, F. Loyer, K. Mitsuhara, K. Yamanaka, Y. Tamenori, C. Tassel, T. Yamamoto, T. Tanaka, H. Kageyama, Adv. Energy Mater. 8 (2018) 1801772.
    [266]
    W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, C. Song, RSC Adv. 8 (2018) 7651–7669.
    [267]
    X. Su, J. Xu, B. Liang, H. Duan, B. Hou, Y. Huang, J. Energy Chem. 25 (2016) 553–565.
    [268]
    S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Fuel 166 (2016) 276–296.
    [269]
    M. Younas, L. Loong Kong, M.J.K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Energy Fuels 30 (2016) 8815–8831.
    [270]
    J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong, F. Su, RSC Adv. 5 (2015) 22759–22776.
    [271]
    M.a.A. Aziz, A.A. Jalil, S. Triwahyono, A. Ahmad, Green Chem. 17 (2015) 2647–2663.
    [272]
    W. Wei, G. Jinlong, Front. Chem. Sci. Eng. 5 (2011) 2–10.
    [273]
    M.T. Fan, J.D. Lin, H.B. Zhang, D.W. Liao, Chem. Commun. 51 (2015) 15720–15723.
    [274]
    J. Huang, X. Li, X. Wang, X. Fang, H. Wang, X. Xu, J. CO2 Util. 33 (2019) 55–63.
    [275]
    A. Goeppert, M. Czaun, J.-P. Jones, G.K.S. Prakash, G.A. Olah, Chem. Soc. Rev. 43 (2014) 7995–8048.
    [276]
    Y. Kuwahara, T. Mihogi, K. Hamahara, K. Kusu, H. Kobayashi, H. Yamashita, Chem. Sci. 12 (2021) 9902–9915.
    [277]
    J. Wang, K.H. Sun, X.Y. Jia, C.J. Liu, Catal. Today 365 (2021) 341–347.
    [278]
    K.M.V. Bussche, G.F. Froment, J. Catal. 161 (1996) 1–10.
    [279]
    E.L. Kunkes, F. Studt, F. Abild-Pedersen, R. Schlögl, M. Behrens, J. Catal. 328 (2015) 43–48.
    [280]
    X. Jia, K. Sun, J. Wang, C. Shen, C.-J. Liu, J. Energy Chem. 50 (2020) 409–415.
    [281]
    X. Cui, S. Chen, H. Yang, Y. Liu, H. Wang, H. Zhang, Y. Xue, G. Wang, Y. Niu, T. Deng, W. Fan, Appl. Catal. B Environ. 298 (2021) 120590.
    [282]
    Z. Hu, X. Yong, D. Li, R.T. Yang, J. Catal. 381 (2020) 204–214.
    [283]
    Z. Hu, R.T. Yang, Ind. Eng. Chem. Res. 58 (2019) 10140–10153.
    [284]
    R. Zhang, N. Liu, Z. Lei, B. Chen, Chem. Rev. 116 (2016) 3658–3721.
    [285]
    Z. Savva, K.C. Petallidou, C.M. Damaskinos, G.G. Olympiou, V.N. Stathopoulos, A.M. Efstathiou, Appl. Catal. Gen. 615 (2021) 118062.
    [286]
    Z.M. Liu, J.H. Li, S.I. Woo, Energy Environ. Sci. 5 (2012) 8799–8814.
    [287]
    X. Zhang, X. Wang, X. Zhao, Y. Xu, H. Gao, F. Zhang, Chem. Eng. J. 252 (2014) 288–297.
    [288]
    L. Wang, C. Yin, R.T. Yang, Appl. Catal. Gen. 514 (2016) 35–42.
    [289]
    H. Shin, M. Choi, H. Kim, Phys. Chem. Chem. Phys. 18 (2016) 7035–7041.
    [290]
    L.P. Qian, W.J. Cai, L. Zhang, Y. Jie, M. Tang, B. Yue, H.Y. He, Appl. Catal. B Environ. 164 (2015) 168–175.
    [291]
    P. Khatri, D. Bhatia, Appl. Catal. Gen. 618 (2021) 118114.
    [292]
    S.T. Oyama, T. Gott, H. Zhao, Y.-K. Lee, Catal. Today 143 (2009) 94–107.
    [293]
    L.-H. Liu, S.-Q. Liu, H.-L. Yin, Y.-Q. Liu, C.-G. Liu, J. Fuel Chem. Technol. 43 (2015) 708–713.
    [294]
    A.A. Pimerzin, P.A. Nikulshin, A.V. Mozhaev, A.A. Pimerzin, A.I. Lyashenko, Appl. Catal. B Environ. 168 (2015) 396–407.
    [295]
    A.A. Pimerzin, P.A. Nikul’shin, A.V. Mozhaev, A.A. Pimerzin, Petrol. Chem. 53 (2013) 245–254.
    [296]
    M.M. Hossain, M.A. Al-Saleh, M.A. Shalabi, T. Kimura, T. Inui, Appl. Catal. Gen. 274 (2004) 43–48.
    [297]
    H. Song, J. Wang, Z. Wang, H. Song, F. Li, Z. Jin, J. Catal. 311 (2014) 257–265.
    [298]
    C. Song, Catal. Today 86 (2003) 211–263.
    [299]
    M. Sugioka, F. Sado, T. Kurosaka, X. Wang, Catal. Today 45 (1998) 327–334.
    [300]
    H. Liu, C. Liu, C. Yin, B. Liu, X. Li, Y. Li, Y. Chai, Y. Liu, Catal. Today 276 (2016) 46–54.
    [301]
    F. Jiao, H. Guo, Y. Chai, H. Awala, S. Mintova, C. Liu, J. Catal. 368 (2018) 89–97.
    [302]
    P. Liu, J.A. Rodriguez, J. Am. Chem. Soc. 127 (2005) 14871–14878.
    [303]
    S.H. Yang, C.N. Satterfield, Ind. Eng. Chem. Process Des. Dev. 23 (1984) 20–25.
    [304]
    B. Liu, Y. Chai, Y. Li, A. Wang, Y. Liu, C. Liu, Fuel 123 (2014) 43–51.
    [305]
    B. Liu, Y. Chai, Y. Li, A. Wang, Y. Liu, C. Liu, Appl. Catal. Gen. 471 (2014) 70–79.
    [306]
    J. He, S.P. Burt, M. Ball, D. Zhao, I. Hermans, J.A. Dumesic, G.W. Huber, ACS Catal. 8 (2018) 1427–1439.
    [307]
    S.K. Beaumont, G. Kyriakou, R.M. Lambert, J. Am. Chem. Soc. 132 (2010) 12246–12248.
    [308]
    Y. Xu, D. Ma, J. Yu, X. Jiang, J. Huang, D. Sun, Ind. Eng. Chem. Res. 56 (2017) 10623–10630.
    [309]
    C. Lu, Q. Zhu, X. Zhang, H. Ji, Y. Zhou, H. Wang, Q. Liu, J. Nie, W. Han, X. Li, ACS Sustain. Chem. Eng. 7 (2019) 8542–8553.
    [310]
    C.0 (2018) 23029–23036.
    [311]
    J. Zhang, D. Mao, D. Wu, ACS Sustain. Chem. Eng. 9 (2021) 13902–13914.
    [312]
    X. Zhao, K. Wu, W. Liao, Y. Wang, X. Hou, M. Jin, Z. Suo, H. Ge, Green Energy Environ. 4 (2019) 300–310.
    [313]
    W. Zhang, L. Ding, W. Sun, T. Sheng, Z. Wu, F. Gao, ACS Sustain. Chem. Eng. 9 (2021) 8257–8269.
    [314]
    H.Q. Zhou, F. Yu, Y.Y. Liu, J.Y. Sun, Z.A. Zhu, R. He, J.M. Bao, W.A. Goddard, S. Chen, Z.F. Ren, Energy Environ. Sci. 10 (2017) 1487–1492.
    [315]
    K. Chen, S.F. Deng, Y. Lu, M.X. Gong, Y.Z. Hu, T.H. Zhao, T. Shen, D.L. Wang, Chin. Chem. Lett. 32 (2021) 765–769.
    [316]
    S.A. Abbas, S.H. Kim, M.I. Iqbal, S. Muhammad, W.S. Yoon, K.D. Jung, Sci. Rep. 8 (2018) 2986.
    [317]
    T. Liu, W. Gao, Q. Wang, M. Dou, Z. Zhang, F. Wang, Angew. Chem. Int. Ed. 132 (2020) 20603–20607.
    [318]
    J. Li, H.-X. Liu, W. Gou, M. Zhang, Z. Xia, S. Zhang, C.-R. Chang, Y. Ma, Y. Qu, Energy Environ. Sci. 12 (2019) 2298–2304.
    [319]
    Z.W. Wei, H.J. Wang, C. Zhang, K. Xu, X.L. Lu, T.B. Lu, Angew. Chem. Int. Ed. 60 (2021) 16622–16627.
    [320]
    J. Duan, S. Chen, C.A. Ortiz-Ledon, M. Jaroniec, S.-Z. Qiao, Angew. Chem. Int. Ed. 59 (2020) 8181–8186.
    [321]
    H. Cheng, N. Yang, G. Liu, Y. Ge, J. Huang, Q. Yun, Y. Du, C.-J. Sun, B. Chen, J. Liu, H. Zhang, Adv. Mater. 32 (2020) 1902964.
    [322]
    A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan, E.S. Cho, T.W. Heo, D. Prendergast, J.J. Urban, B.C. Wood, M.D. Allendorf, V. Stavila, Chem. Rev. 118 (2018) 10775–10839.
    [323]
    W. Gao, M. Yan, H.-Y. Cheung, Z. Xia, X. Zhou, Y. Qin, C.-Y. Wong, J.C. Ho, C.-R. Chang, Y. Qu, Nano Energy 38 (2017) 290–296.
    [324]
    T. Liu, W. Gao, Q. Wang, M. Dou, Z. Zhang, F. Wang, Angew. Chem. Int. Ed. 59 (2020) 20423–20427.
    [325]
    J. Huang, J. Han, T. Wu, K. Feng, T. Yao, X. Wang, S. Liu, J. Zhong, Z. Zhang, Y. Zhang, B. Song, ACS Energy Lett. 4 (2019) 3002–3010.
    [326]
    Y. Cheng, S. Lu, F. Liao, L. Liu, Y. Li, M. Shao, Adv. Funct. Mater. 27 (2017) 1700359.
    [327]
    R. Hao, Y.S. Fan, M.D. Howard, J.C. Vaughan, B. Zhang, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 5878–5883.
    [328]
    G.R. Monama, S.B. Mdluli, G. Mashao, M.D. Makhafola, K.E. Ramohlola, K.M. Molapo, M.J. Hato, K. Makgopa, E.I. Iwuoha, K.D. Modibane, Renew. Energy 119 (2018) 62–72.
    [329]
    X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Nat. Commun. 4 (2013) 1444.
    [330]
    J. Li, J. Hu, M. Zhang, W. Gou, S. Zhang, Z. Chen, Y. Qu, Y. Ma, Nat. Commun. 12 (2021) 3502.
    [331]
    M.F. Li, K.N. Duanmu, C.Z. Wan, T. Cheng, L. Zhang, S. Dai, W.X. Chen, Z.P. Zhao, P. Li, H.L. Fei, Y.M. Zhu, R. Yu, J. Luo, K.T. Zang, Z.Y. Lin, M.N. Ding, J. Huang, H.T. Sun, J.H. Guo, X.Q. Pan, W.A. Goddard, P. Sautet, Y. Huang, X.F. Duan, Nat. Catal. 2 (2019) 495–503.
    [332]
    X. Li, J. Yu, J. Jia, A. Wang, L. Zhao, T. Xiong, H. Liu, W. Zhou, Nano Energy 62 (2019) 127–135.
    [333]
    J. Park, S. Lee, H.-E. Kim, A. Cho, S. Kim, Y. Ye, J.W. Han, H. Lee, J.H. Jang, J. Lee, Angew. Chem. Int. Ed. 58 (2019) 16038–16042.
    [334]
    C. Wang, H. Lu, K. Tang, Z. Mao, Q. Li, X. Wang, C. Yan, Electrochim. Acta 336 (2020) 135740.
    [335]
    J. Deng, P.J. Ren, D.H. Deng, L. Yu, F. Yang, X.H. Bao, Energy Environ. Sci. 7 (2014) 1919–1923.
    [336]
    M. Sheng, B. Jiang, B. Wu, F. Liao, X. Fan, H. Lin, Y. Li, Y. Lifshitz, S.-T. Lee, M. Shao, ACS Nano 13 (2019) 2786–2794.
    [337]
    L. Zhu, H. Lin, Y. Li, F. Liao, Y. Lifshitz, M. Sheng, S.-T. Lee, M. Shao, Nat. Commun. 7 (2016) 12272.
    [338]
    D.-H. Ha, B. Han, M. Risch, L. Giordano, K.P.C. Yao, P. Karayaylali, Y. Shao-Horn, Nano Energy 29 (2016) 37–45.
    [339]
    A. Alinezhad, L. Gloag, T.M. Benedetti, S. Cheong, R.F. Webster, M. Roelsgaard, B.B. Iversen, W. Schuhmann, J.J. Gooding, R.D. Tilley, J. Am. Chem. Soc. 141 (2019) 16202–16207.
    [340]
    S. Wang, X. Gao, X. Hang, X. Zhu, H. Han, W. Liao, W. Chen, J. Am. Chem. Soc. 138 (2016) 16236–16239.
    [341]
    H. Li, X. Yan, B. Lin, M. Xia, J. Wei, B. Yang, G. Yang, Nano Energy 47 (2018) 481–493.
    [342]
    J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z.H. Kang, Science 347 (2015) 970–974.
    [343]
    J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao, Nat. Commun. 8 (2017) 13907.
    [344]
    S.Q. Peng, C. Gan, Y. Yang, S.F. Ji, Y.X. Li, Energy Technol. 6 (2018) 2166–2171.
    [345]
    J.Y. Jin, Y.R. Cao, T. Feng, Y.X. Li, R.A. Wang, K.L. Zhao, W. Wang, B.H. Dong, L.X. Cao, Catal. Sci. Technol. 11 (2021) 2753–2761.
    [346]
    Q. Sun, N. Wang, J. Yu, J.C. Yu, Adv. Mater. 30 (2018) 1804368.
    [347]
    G. Sun, S. Mao, D. Ma, Y. Zou, Y. Lv, Z. Li, C. He, Y. Cheng, J.-W. Shi, J. Mater. Chem. A 7 (2019) 15278–15287.
    [348]
    D. Ma, Z. Wang, J.-W. Shi, M. Zhu, H. Yu, Y. Zou, Y. Lv, G. Sun, S. Mao, Y. Cheng, Chem. Eng. J. 431 (2022) 133446.
    [349]
    J.-W. Shi, D. Sun, Y. Zou, D. Ma, C. He, X. Ji, C. Niu, Chem. Eng. J. 364 (2019) 11–19.
    [350]
    D. Ma, J.-W. Shi, Y. Zou, Z. Fan, X. Ji, C. Niu, L. Wang, Nano Energy 39 (2017) 183–191.
    [351]
    G.T. Sun, B. Xiao, J.W. Shi, S.M. Mao, C. He, D.D. Ma, Y.H. Cheng, J. Colloid Interface Sci. 596 (2021) 215–224.
    [352]
    Y. Zhu, D. Liu, M. Meng, Chem. Commun. 50 (2014) 6049–6051.
    [353]
    X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110 (2010) 6503–6570.
    [354]
    J.M. Cai, A. Cao, Z.B. Wang, S.Y. Lu, Z. Jiang, X.Y. Dong, X.G. Li, S.Q. Zang, J. Mater. Chem. A 9 (2021) 13890–13897.
    [355]
    W. Wan, X. Nie, M.J. Janik, C. Song, X. Guo, J. Phys. Chem. C 122 (2018) 17895–17916.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (684) PDF downloads(51) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return