Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Xiuzheng Zhuang, Jianguo Liu, Longlong Ma. Facile synthesis of hydrochar-supported catalysts from glucose and its catalytic activity towards the production of functional amines. Green Energy&Environment, 2023, 8(5): 1358-1370. doi: 10.1016/j.gee.2022.01.012
Citation: Xiuzheng Zhuang, Jianguo Liu, Longlong Ma. Facile synthesis of hydrochar-supported catalysts from glucose and its catalytic activity towards the production of functional amines. Green Energy&Environment, 2023, 8(5): 1358-1370. doi: 10.1016/j.gee.2022.01.012

Facile synthesis of hydrochar-supported catalysts from glucose and its catalytic activity towards the production of functional amines

doi: 10.1016/j.gee.2022.01.012
  • Since the utilization of abundant biomass to develop advanced materials has become an utmost priority in recent years, we developed two sustainable routes (i.e., the impregnation method and the one-pot synthesis) to prepare the hydrochar-supported catalysts and tested its catalytic performance on the reductive amination. Several techniques, such as TEM, XRD and XPS, were adopted to characterize the structural and catalytic features of samples. Results indicated that the impregnation method favors the formation of outer-sphere surface complexes with porous structure as well as well-distributed metallic nanoparticles, while the one-pot synthesis tends to form the inner-sphere surface complexes with relatively smooth appearance and amorphous metals. This difference explains the better activity of catalysts prepared by the impregnation method which can selectively convert benzaldehyde to benzylamine with an excellent yield of 93.7% under the optimal reaction conditions; in contrast, the catalyst prepared by the one-pot synthesis only exhibits a low selectivity near to zero. Furthermore, the gram-scale test catalyzed by the same catalysts exhibits a similar yield of benzylamine in comparison to its smaller scale, which is comparable to the previously reported heterogeneous noble-based catalysts. More surprisingly, the prepared catalysts can be expediently recycled by a magnetic bar and remain the satisfying catalytic activity after reusing up to five times. In conclusion, these developed catalysts enable the synthesis of functional amines with excellent selectivity and carbon balance, proving cost-effective and sustainable access to the wide application of reductive amination.

     

  • loading
  • [1]
    H. Alinezhad, H. Yavari, F. Salehian, Curr. Org. Chem. 19 (2015) 1021-1049.
    [2]
    V. Froidevaux, C. Negrell, S. Caillol, J.P. Pascault, B. Boutevin, Chem Rev 116 (2016) 14181-14224.
    [3]
    U. Mandi, A.S. Roy, S.K. Kundu, S. Roy, A. Bhaumik, S.M. Islam, J. Colloid. Interf. Sci. 472 (2016) 202-209.
    [4]
    K. Murugesan, V.G. Chandrashekhar, T. Senthamarai, R.V. Jagadeesh, M. Beller, Nat. Protoc. 15 (2020) 1313-1337.
    [5]
    S. Raoufmoghaddam, Org. Biomol. Chem. 12 (2014) 7179-7193.
    [6]
    K. Zhou, B. Chen, X. Zhou, S. Kang, Y. Xu, J. Wei, Chemcatchem 11 (2019) 5562-5569.
    [7]
    J. He, L. Chen, S. Liu, K. Song, S. Yang, A. Riisager, Green Chem 22 (2020) 6714-6747.
    [8]
    S.C.A. Sousa, A.C. Fernandes, Adv. Synth. Catal. 352 (2010) 2218-2226.
    [9]
    S.D. Wang, H.Y. Huang, C. Bruneau, C. Fischmeister, Chemsuschem 10 (2017) 4150-4154.
    [10]
    J.G. Liu, Y.T. Zhu, C.G. Wang, T. Singh, N. Wang, Q.Y. Liu, Z.B. Cui, L.L. Ma, Green Chem 22 (2020) 7387-7397.
    [11]
    J.G. Liu, Y.P. Song, X.Z. Zhuang, M.Y. Zhang, L.L. Ma, Green Chem 23 (2021) 4604-4617.
    [12]
    R.V. Jagadeesh, K. Murugesan, A.S. Alshammari, H. Neumann, M.M. Pohl, J. Radnik, M. Beller, Science 358 (2017) 326-332.
    [13]
    F. Mao, D. Sui, Z. Qi, H. Fan, R. Chen, J. Huang, Rsc Adv 6 (2016) 94068-94073.
    [14]
    K. Ravi, J.H. Advani, B.D. Bankar, A.S. Singh, A.V. Biradar, New J Chem 44 (2020) 18714-18723.
    [15]
    A. Prekob, V. Hajdu, G. Muranszky, B. Fiser, A. Sycheva, T. Ferenczi, B. Viskolcz, L. Vanyorek, Mater. Today. Chem. 17 (2020) 100337.
    [16]
    Y. Habibi, L.A. Lucia, O.J. Rojas, Chem Rev 110 (2010) 3479-3500.
    [17]
    C. Gai, F. Zhang, Q.Q. Lang, T.T. Liu, N.N. Peng, Z.G. Liu, Appl Catal B-Environ 204 (2017) 566-576.
    [18]
    Z.L. Yuan, B. Liu, P. Zhou, Z.H. Zhang, Q. Chi, J Catal 370 (2019) 347-356.
    [19]
    Q.G. Yan, C.X. Wan, J. Liu, J.S. Gao, F. Yu, J.L. Zhang, Z.Y. Cai, Green Chem 15 (2013) 1631-1640.
    [20]
    M.M. Titirici, M. Antonietti, Chem Soc Rev 39 (2010) 103-116.
    [21]
    B. Hu, K. Wang, L.H. Wu, S.H. Yu, M. Antonietti, M.M. Titirici, Adv Mater 22 (2010) 813-828.
    [22]
    A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernandez-Gonzalez, V. Gomez-Serrano, Fuel. Process. Technol. 126 (2014) 95-103.
    [23]
    M.C. Romanmartinez, D. Cazorlaamoros, A. Linaressolano, C.S.M. Delecea, H. Yamashita, M. Anpo, Carbon 33 (1995) 3-13.
    [24]
    W.P. Ma, E.L. Kugler, D.B. Dadyburjor, Energ Fuels 24 (2010) 4099-4110.
    [25]
    X.Z. Zhuang, J.G. Liu, S.R. Zhong, L.L. Ma, Green Chem 24 (2022) 271-284.
    [26]
    A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernandez-Gonzalez, V. Gomez-Serrano, J Microsc-Oxford 261 (2016) 227-242.
    [27]
    R. Demir-Cakan, N. Baccile, M. Antonietti, M.M. Titirici, Chem. Mater. 21 (2009) 484-490.
    [28]
    X.Z. Zhuang, H. Zhan, Y.P. Song, C. He, Y.Q. Huang, X.L. Yin, C.Z. Wu, Fuel 236 (2019) 960-974.
    [29]
    X.Y. Li, C.M. Zeng, J. Jiang, L.H. Ai, J. Mater. Chem. A. 4 (2016) 7476-7482.
    [30]
    K. Murugesan, T. Senthamarai, M. Sohail, A.S. Alshammari, M.M. Pohl, M. Beller, R.V. Jagadeesh, Chem Sci 9 (2018) 8553-8560.
    [31]
    C.J. Eom, J. Suntivich, J. Phys. Chem. C. 123 (2019) 29284-29290.
    [32]
    U. Veerabagu, Z.B. Chen, J. Xiang, Z.H. Chen, M.G. Liu, H. Xia, F.S. Lu, J. Environ. Chem. Eng. 9 (2021) 105246.
    [33]
    L.L. Wang, Y.J. Weng, P.G. Duan, X.Y. Liu, X.L. Wang, Y.L. Zhang, C.G. Wang, Q.Y. Liu, L.L. Ma, SN Appl Sci 1 (2019) 404.
    [34]
    Y. Xu, W.X. Shan, X. Liang, X.H. Gao, W.Z. Li, H.M. Li, X.Q. Qiu, Ind. Eng. Chem. Res. 59 (2020) 4367-4376.
    [35]
    A. Pei, L.N. Ruan, H. Fu, J. Liu, L. Zeng, H. Zhang, J.R. Hua, L.H. Zhu, B.H. Chen, Crystengcomm 22 (2020) 5382-5388.
    [36]
    W. Lv, Y.T. Zhu, J. Liu, C.G. Wang, Y. Xu, Q. Zhang, G.Y. Chen, L.L. Ma, Acs Sustain Chem Eng 7 (2019) 5751-5763.
    [37]
    X.H. Zhang, W.W. Tang, Q. Zhang, T.J. Wang, L.L. Ma, Appl. Energ. 227 (2018) 73-79.
    [38]
    D. Li, Q.Y. Liu, C.H. Zhu, H.Y. Wang, C.H. Cui, C.G. Wang, L.L. Ma, J. Energy. Chem. 30 (2019) 34-41.
    [39]
    K. Murugesan, Z.H. Wei, V.G. Chandrashekhar, H. Neumann, A. Spannenberg, H.J. Jiao, M. Beller, R.V. Jagadeesh, Nat. Commun. 10 (2019) 1-9.
    [40]
    N.S. Gould, H. Landfield, B. Dinkelacker, C. Brady, X. Yang, B.J. Xu, Chemcatchem 12 (2020) 2106-2115.
    [41]
    A.C. Ghogia, A. Nzihou, P. Serp, K. Soulantica, D.P. Minh, Appl Catal a-Gen 609 (2021) 117906.
    [42]
    S.Q. Fang, Z.B. Cui, Y.T. Zhu, C.G. Wang, J. Bai, X.H. Zhang, Y. Xu, Q.Y. Liu, L.G. Chen, Q. Zhang, L.L. Ma, J. Energy. Chem. 37 (2019) 204-214.
    [43]
    X.Z. Zhuang, H. Zhan, Y.Q. Huang, Y.P. Song, X.L. Yin, C.Z. Wu, Bioresource. Technol. 267 (2018) 17-29.
    [44]
    Y.F. Yang, L.T. Jia, B. Hou, D.B. Li, J.G. Wang, Y.H. Sun, Catal Sci Technol 4 (2014) 717-728.
    [45]
    D. Chandra, Y. Inoue, M. Sasase, M. Kitano, A. Bhaumik, K. Kamata, H. Hosono, M. Hara, Chem Sci 9 (2018) 5949-5956.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (145) PDF downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return