Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Daqiang Yan, Lin Zhang, Lei Shen, Runyu Hu, Weiping Xiao, Xiaofei Yang. Pd nanoparticles embedded in N-Enriched MOF-Derived architectures for efficient oxygen reduction reaction in alkaline media. Green Energy&Environment, 2023, 8(4): 1205-1215. doi: 10.1016/j.gee.2022.01.011
Citation: Daqiang Yan, Lin Zhang, Lei Shen, Runyu Hu, Weiping Xiao, Xiaofei Yang. Pd nanoparticles embedded in N-Enriched MOF-Derived architectures for efficient oxygen reduction reaction in alkaline media. Green Energy&Environment, 2023, 8(4): 1205-1215. doi: 10.1016/j.gee.2022.01.011

Pd nanoparticles embedded in N-Enriched MOF-Derived architectures for efficient oxygen reduction reaction in alkaline media

doi: 10.1016/j.gee.2022.01.011
  • Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction (ORR) is still challenging for alkaline membrane fuel cell, since the strong oxygen adsorption energy and easy agglomerative intrinsic properties. In order to simultaneously solve these problems, Pd/Co3O4–N–C multidimensional materials with porous structures is designed as the ORR catalysts. In details, the ZIF-67 with polyhedral structure was firstly synthesized and then annealed at high-temperature to prepare the N-doped Co3O4 carbon-based material, which was used to homogeneously confine Pd nanoparticles and obtained the Pd/Co3O4–N–C series catalysts. The formation of Co–N and C–N bond could provide efficient active sites for ORR. Simultaneously, the strong electronic interaction in the interface between the Pd and N-doped Co3O4 could disperse and avoid the agglomeration of Pd nanoparticles and ensure the exposure of active sites, which is crucial to lower the energy barrier toward ORR and substantially enhance the ORR kinetics. Hence, the Pd/Co3O4–N–C nanocompounds exhibited excellent ORR catalytic performance, ideal Pd mass activity, and durability in 0.1 mol L-1 KOH solution compared with Co3O4–N–C and Pd/C. The scalable synthesis method, relatively low cost, and excellent electrochemical ORR performance indicated that the obtained Pd/Co3O4–N–C electrocatalyst had the potential for application on fuel cells.

     

  • loading
  • [1]
    Q. Li, T. Wang, D. Havas, H. Zhang, P. Xu, J. Han, J. Cho, G. Wu, Adv. Sci. 3 (2016) 1600140.
    [2]
    Y. Liu, Y. Li, Y. Chen, T. Qu, C. Shu, X. Yang, H. Zhu, S. Guo, S. Zhao, T. Asefa, Y. Liu, J. Mater. Chem. 8 (2020) 8329-8336.
    [3]
    X. Yan, A. Xu, L. Zeng, P. Gao, T. Zhao, Energy Technol-Ger 6 (2018) 140-143.
    [4]
    G. Jeerh, M. Zhang, S. Tao, J. Mater. Chem. A 9 (2021) 727-752.
    [5]
    Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, Energy Environ. Sci. 9 (2016) 162-1644.
    [6]
    S. Zaman, L. Huang, A.I. Douka, H. Yang, B. You, B.Y. Xia, Angew. Chem. Int. Ed. 60 (2021) 17832-17852.
    [7]
    J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu, D. Wang, S. Mu, H.Y. Yang, Nano-Micro Lett. 13 (2021).
    [8]
    H.S. Kim, C.H. Lee, J. Jang, M.S. Kang, H. Jin, K. Lee, S.U. Lee, S.J. Yoo, W.C. Yoo, J J. Mater. Chem. A 9 (2021) 4297-4309.
    [9]
    J. Lim, J. Jung, N. Kim, G.Y. Lee, H.J. Lee, Y. Lee, D.S. Choi, K.R. Yoon, Y. Kim, I. Kim, S.O. Kim, Energy Storage Mater. 32 (2020) 517-524.
    [10]
    B. Xie, Y. Zhang, R. Zhang, J. Mater. Chem. A 5 (2017) 17544-17548.
    [11]
    L. Zhang, Y. Zhao, M.N. Banis, K. Adair, Z. Song, L. Yang, M. Markiewicz, J. Li, S. Wang, R. Li, S. Ye, X. Sun, Nano Energy 60 (2019) 111-118.
    [12]
    J. Lai, S. Guo, Small 13 (2017) 1702156.
    [13]
    M. Liu, Z. Zhao, X. Duan, Y. Huang, Adv. Mater. 31 (2019) 1802234.
    [14]
    H. Zhang, J. Zhang, K. Liu, Y. Zhu, X. Qiu, D. Sun, Y. Tang, Green Energy Environ. 4 (2019) 245-253.
    [15]
    T. Wu, M. Sun, B. Huang, Mater. Today Energy 12 (2019) 426-430.
    [16]
    L.M. Uhlig, G. Sievers, V. Bruser, A. Dyck, G. Wittstock, Sci. Bull. 61 (2016) 612-618.
    [17]
    Y. Xie, Y. Yang, D.A. Muller, H.D. Abruna, N. Dimitrov, J. Fang, ACS Catal. 10 (2020) 9967-9976.
    [18]
    G. Chao, X. An, L. Zhang, J. Tian, W. Fan, T. Liu, Compos. Commun. 24 (2021) 100603.
    [19]
    Y. Zuo, D. Rao, S. Li, T. Li, G. Zhu, S. Chen, L. Song, Y. Chai, H. Han, Adv. Mater. 30 (2018) 1704171.
    [20]
    W. Wang, X. Li, T. He, Y. Liu, M. Jin, Nano Lett. 19 (2019) 1743-1748.
    [21]
    M. Shao, Q. Chang, J. Dodelet, R. Chenitz, Chem. Rev. 116 (2016) 3594-3657.
    [22]
    K. Kusunoki, D. Kudo, K. Hayashi, Y. Chida, N. Todoroki, T. Wadayama, ACS Catal. 11 (2021) 1554-1562.
    [23]
    H. Xu, H. Shang, C. Wang, Y. Du, Small 17 (2021) 2005092.
    [24]
    L. Zhang, K. Lee, J. Zhang, Electrochim. Acta 52 (2007) 3088-3094.
    [25]
    R. Rahul, R.K. Singh, M. Neergat, J. Electroanal. Chem. 712 (2014) 223-229.
    [26]
    E. Lopez-Chavez, A. Garcia-Quiroz, G. Gonzalez-Garcia, Y.A. Pena-Castaneda, J.A.I. Diaz-Gongora, F. de Landa Castillo-Alvarado, Int. J. Hydrogen Energy 41 (2016) 23281-23286.
    [27]
    R.M. Abdel Hameed, J. Colloid Interface Sci. 505 (2017) 230-240.
    [28]
    H. Liu, S. Han, Y. Zhu, P. Chen, Y. Chen, Green Energy Environ. 3 (2018) 375-383.
    [29]
    G. Chao, L. Zhang, J. Tian, W. Fan, T. Liu, Compos. Commun. 25 (2021) 100703.
    [30]
    G. Zhou, J. Ma, S. Bai, L. Wang, Y. Guo, Rare Met. 39 (2019) 800-805.
    [31]
    M. Nunes, D.M. Fernandes, M.V. Morales, I. Rodriguez-Ramos, A. Guerrero-Ruiz, C. Freire, Catal. Today 357 (2020) 279-290.
    [32]
    M. Lusi, H. Erikson, A. Sarapuu, M. Merisalu, M. Rahn, A. Treshchalov, P. Paiste, M. Kaarik, J. Leis, V. Sammelselg, T. Kaljuvee, K. Tammeveski, Chemelectrochem 7 (2020) 546-554.
    [33]
    L. Zhang, J. Xiao, H. Wang, M. Shao, ACS Catal. 7 (2017) 7855-7865.
    [34]
    J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao, F. Ciucci, Prog. Mater. Sci. 116 (2021) 100717.
    [35]
    D.M. Morales, M.A. Kazakova, S. Dieckhofer, A.G. Selyutin, G.V. Golubtsov, W. Schuhmann, J. Masa, Adv. Funct. Mater. 30 (2019) 1905992.
    [36]
    M. Martins, B. Sljukic, C.A.C. Sequeira, G.S.P. Soylu, A.B. Yurtcan, G. Bozkurt, T. Sener, D.M.F. Santos, Appl. Surf. Sci. 428 (2018) 31-40.
    [37]
    L. Liang, H. Jin, H. Zhou, B. Liu, C. Hu, D. Chen, Z. Wang, Z. Hu, Y. Zhao, H. Li, D. He, S. Mu, Nano Energy 88 (2021) 106221.
    [38]
    L. Liang, H. Jin, H. Zhou, B. Liu, C. Hu, D. Chen, J. Zhu, Z. Wang, H. Li, S. Liu, D. He, S. Mu, J. Energy Chem. 65 (2022) 48-54.
    [39]
    C. Li, D. Zhao, H. Long, M. Li, Rare Met. 40 (2021) 2657-2689.
    [40]
    T. Zhu, Q. Feng, S. Liu, C. Zhang, Compos. Commun. 20 (2020) 100376.
    [41]
    J. Guo, S. Gadipelli, Y. Yang, Z. Li, Y. Lu, D.J.L. Brett, Z. Guo, J. Mater. Chem. A 7 (2019) 3544-3551.
    [42]
    L. Wang, Q. Zhang, T. Wei, F. Li, Z. Sun, L. Xu, J. Mater. Chem. A 9 (2021) 2912-2918.
    [43]
    L. Yang, X. Zeng, W. Wang, D. Cao, Adv. Funct. Mater. 28 (2018) 1704537.
    [44]
    Y. Xiong, Y. Yang, F.J. DiSalvo, H.D. Abruna, J. Am. Chem. Soc. 141 (2019) 10744-10750.
    [45]
    C. Duan, Y. Yu, H. Hu, Green Energy Environ. 7 (2022) 3-15.
    [46]
    F. Mauriello, H. Ariga-Miwa, E. Paone, R. Pietropaolo, S. Takakusagi, K. Asakura, Catal. Today 357 (2020) 511-517.
    [47]
    L. Bai, H. Zheng, J. Ma, J. Wang, Z. Chen, Q. Huang, Inorg. Chem. 58 (2019) 8884-8889.
    [48]
    Y. Xiong, Y. Yang, F.J. DiSalvo, H.D. Abruna, ACS Nano 14 (2020) 13069-13080.
    [49]
    Y. Zhu, C. Shang, Z. Wang, J. Zhang, M. Yang, H. Cheng, Z. Lu, Rare Met. 40 (2019) 90-95.
    [50]
    P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed. 55 (2016) 10800-10805.
    [51]
    E.S.F. Cardoso, G.V. Fortunato, G. Maia, Chemelectrochem 5 (2018) 1691-1701.
    [52]
    L. Shi, Y. Li, X. Cai, H. Zhao, M. Lan, J. Electroanal. Chem. 799 (2017) 512-518.
    [53]
    X. Gu, Z. Liu, H. Liu, C. Pei, L. Feng, Chem. Eng. J. 403 (2021) 126371.
    [54]
    R. Chen, Y. Tan, Z. Zhang, Z. Lei, W. Wu, N. Cheng, S. Mu, ACS Sustain. Chem. Eng. 8 (2020) 9813-9821.
    [55]
    G. Jiang, X. Li, X. Lv, L. Chen, Sci. Bull. 61 (2016) 1248-1254.
    [56]
    K. Zhao, H. Li, S. Tian, W. Yang, X. Wang, A. Pang, C. Xie, D. Zeng, Inorg. Chem. Front. 6 (2019) 715-722.
    [57]
    X. Yang, J. Chen, Y. Chen, P. Feng, H. Lai, J. Li, X. Luo, Nano-Micro Lett. 10 (2018).
    [58]
    F. Tzorbatzoglou, A. Brouzgou, P. Tsiakaras, Appl. Catal., B 174-175 (2015) 203-211.
    [59]
    Y. Li, Z. Jin, T. Zhao, Chem. Eng. J. 382 (2020) 123051.
    [60]
    X. Hu, Y. Wang, R. Wu, Y. Zhao, Mol. Catal. 509 (2021) 111656.
    [61]
    Q. Yu, C. Liu, X. Li, C. Wang, X. Wang, H. Cao, M. Zhao, G. Wu, W. Su, T. Ma, J. Zhang, H. Bao, J. Wang, B. Ding, M. He, Y. Yamauchi, X.S. Zhao, Appl. Catal., B 269 (2020) 118757.
    [62]
    W. Ma, N. Wang, Y. Fan, T. Tong, X. Han, Y. Du, Chem. Eng. J. 336 (2018) 721-731.
    [63]
    Z.Y. Wang, S.D. J, C.Q. Duan, D. W,S.H. Luo, Y.G. Liu, Rare Met. (2020) 1383-1394.
    [64]
    D. He, X. Song, W. Li, C. Tang, J. Liu, Z. Ke, C. Jiang, X. Xiao, Angew. Chem. Int. Ed. 59 (2020) 6929-6935.
    [65]
    R. Huang, K. Kim, H.J. Kim, M.G. Jang, J.W. Han, ACS Appl. Nano Mater. 3 (2019) 486-495.
    [66]
    Z. Chen, S. Wang, Y. Ding, L. Zhang, L. Lv, M. Wang, S. Wang, Appl. Catal., A 532 (2017) 95-104.
    [67]
    G. Zhong, S. Xu, L. Liu, C.Z. Zheng, J. Dou, F. Wang, X. Fu, W. Liao, H. Wang, Chemelectrochem 7 (2020) 1107-1114.
    [68]
    K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Electrochim. Acta 53 (2008) 3181-3188.
    [69]
    M. Arenz, K.J.J. Mayrhofer, V. Stamenkovic, B.B. Blizanac, T. Tomoyuki, P.N. Ross, N.M. Markovic, J. Am. Chem. Soc. 127 (2005) 6819-6829.
    [70]
    H. Chen, Q. Li, W. Yan, Z. Gu, J. Zhang, Chem. Eng. J. 401 (2020) 126149.
    [71]
    J. Yu, Z. Liu, L. Zhai, T. Huang, J. Han, Int. J. Hydrogen Energ. 41 (2016) 3436-3445.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (206) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return