Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Mengzhao Zhang, Hanqing Yin, Fuhao Jin, Jingquan Liu, Xuqiang Ji, Aijun Du, Wenrong Yang, Zhen Liu. Vacancy engineering of oxidized Nb2CTx MXenes for a biased nitrogen fixation. Green Energy&Environment, 2023, 8(4): 1185-1194. doi: 10.1016/j.gee.2022.01.010
Citation: Mengzhao Zhang, Hanqing Yin, Fuhao Jin, Jingquan Liu, Xuqiang Ji, Aijun Du, Wenrong Yang, Zhen Liu. Vacancy engineering of oxidized Nb2CTx MXenes for a biased nitrogen fixation. Green Energy&Environment, 2023, 8(4): 1185-1194. doi: 10.1016/j.gee.2022.01.010

Vacancy engineering of oxidized Nb2CTx MXenes for a biased nitrogen fixation

doi: 10.1016/j.gee.2022.01.010
  • The artificial nitrogen (N2) reduction reaction (NRR) via electrocatalysis is a newly developed methodology to produce ammonia (NH3) at ambient conditions, but faces the challenges in N2 activation and poor reaction selectivity. Herein, Nb-based MXenes are developed to remarkably enhance the NRR activity through the engineering of the stretched 3D structure and oxygen vacancies (VO). The theoretical studies indicate that N2 could be initially adsorbed on VO with an end-on configuration, and the potential determining step might be the first hydrogenation step. The catalysts achieve an NH3 production rate of 29.1 μg h-1 mgcat-1 and excellent Faradic efficiency of 11.5%, surpassing other Nb-based catalysts. The selectivity of NRR is assigned to the unique structure of the catalysts, including (1) the layered graphitic structure for fast electron transfer and active site distribution, (2) the reactive VO for N2 adsorption and activation, and (3) the expanded interlayer space for mass transfer.

     

  • loading
  • [1]
    K.A. Brown, D.F. Harris, M.B. Wilker, A. Rasmussen, N. Khadka, H. Hamby, S. Keable, G. Dukovic, J.W. Peters, L.C. Seefeldt, P.W. King, Science 352 (2016) 448-450.
    [2]
    J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Science 360 (2018) eaar6611.
    [3]
    Y. Luo, G.-F. Chen, L. Ding, X. Chen, L.-X. Ding, H. Wang, Joule 3 (2019) 279-289.
    [4]
    X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi, X. Sun, Small 14 (2018) 1803111.
    [5]
    Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang, J. Zhao, ACS Catal. 8 (2018) 1186-1191.
    [6]
    Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li, X. Sun, ACS Catal. 8 (2018) 8540-8544.
    [7]
    Z. Liu, M. Zhang, H. Wang, D. Cang, X. Ji, B. Liu, W. Yang, D. Li, J. Liu, ACS Sustain. Chem. Eng. 8 (2020) 5278-5286.
    [8]
    H. Zou, W. Rong, B. Long, Y. Ji, L. Duan, ACS Catal. 9 (2019) 10649-10655.
    [9]
    S. Zhang, X. Zhang, Y. Rui, R. Wang, X. Li, Green Energy Environ. 6 (2021) 458-478.
    [10]
    H.-M. Liu, S.-H. Han, Y. Zhao, Y.-Y. Zhu, X.-L. Tian, J.-H. Zeng, J.-X. Jiang, B.Y. Xia, Y. Chen, J. Mater. Chem. 6 (2018) 3211-3217.
    [11]
    D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang, X.-B. Zhang, Adv. Mater. 29 (2017) 1604799.
    [12]
    J. Wang, L. Yu, L. Hu, G. Chen, H. Xin, X. Feng, Nat. Commun. 9 (2018) 1795.
    [13]
    S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Mater. 29 (2017) 1700001.
    [14]
    R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo, X. Sun, ACS Appl. Mater. Interfaces 10 (2018) 28251-28255.
    [15]
    P. Niu, T. Wu, L. Wen, J. Tan, Y. Yang, S. Zheng, Y. Liang, F. Li, J.T.S. Irvine, G. Liu, X. Ma, H.-M. Cheng, Adv. Mater. 30 (2018) 1705999.
    [16]
    Q. Zhang, W.-Z. Wang, J.-J. Yu, D.-H. Qu, H. Tian, Adv. Mater. 29 (2017) 1604948.
    [17]
    J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu, X. Sun, Nano Energy 52 (2018) 264-270.
    [18]
    C.B. Li, D.W. Ma, S.Y. Mou, Y.S. Luo, B.Y. Ma, S.Y. Lu, G.W. Cui, Q. Li, Q. Liu, X.P. Sun, J. Energy Chem. 50 (2020) 402-408.
    [19]
    W.R. Liao, K. Xie, L.J. Liu, X.Y. Wang, Y. Luo, S.J. Liang, F.J. Liu, L.L. Jiang, J. Energy Chem. 62 (2021) 359-366.
    [20]
    Y. Fang, Z. Liu, J. Han, Z. Jin, Y. Han, F. Wang, Y. Niu, Y. Wu, Y. Xu, Adv. Energy Mater. 9 (2019) 1803406.
    [21]
    C.C. Leong, Y. Qu, Y. Kawazoe, S.K. Ho, H. Pan, Catal. Today 370 (2021) 2-13.
    [22]
    X. Li, Y. Luo, Q. Li, Y. Guo, K. Chu, J. Mater. Chem. 9 (2021) 15955-15962.
    [23]
    Z. Liu, J. Liu, D. Li, P.S. Francis, N.W. Barnett, C.J. Barrow, W. Yang, Chem. Commun. 51 (2015) 10969-10972.
    [24]
    Z. Liu, A. Dibaji, D. Li, S. Mateti, J. Liu, F. Yan, C.J. Barrow, Y. Chen, K. Ariga, W. Yang, Mater. Today 44 (2021) 194-210.
    [25]
    A. VahidMohammadi, J. Rosen, Y. Gogotsi, Science 372 (2021) .
    [26]
    J.-T. Ren, Y. Yao, Z.-Y. Yuan, Green Energy Environ. 6 (2021) 620-643.
    [27]
    Y. Wang, Y. Nian, A.N. Biswas, W. Li, Y. Han, J.G. Chen, Adv. Energy Mater. 11 (2021) 2002967.
    [28]
    B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2 (2017) 16098.
    [29]
    L.R. Johnson, S. Sridhar, L. Zhang, K.D. Fredrickson, A.S. Raman, J. Jang, C. Leach, A. Padmanabhan, C.C. Price, N.C. Frey, A. Raizada, V. Rajaraman, S.A. Saiprasad, X. Tang, A. Vojvodic, ACS Catal. 10 (2020) 253-264.
    [30]
    L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.-X. Ding, S. Wang, J. Caro, Y. Gogotsi, Nat. Commun. 9 (2018) 155.
    [31]
    M. Naguib, O. Mashtalir, M.R. Lukatskaya, B. Dyatkin, C.F. Zhang, V. Presser, Y. Gogotsi, M.W. Barsoum, Chem. Commun. 50 (2014) 7420-7423.
    [32]
    M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, ACS Nano 6 (2012) 1322-1331.
    [33]
    A. Ali, K. Hantanasirisakul, A. Abdala, P. Urbankowski, M.-Q. Zhao, B. Anasori, Y. Gogotsi, B. Aissa, K.A. Mahmoud, Langmuir 34 (2018) 11325-11334.
    [34]
    T.M. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov, J.K. Keum, Z.Z. Qin, Z.H. Guo, Z.L. Wu, ChemSusChem 11 (2018) 688-699.
    [35]
    D. Zhu, L.H. Zhang, R.E. Ruther, R.J. Hamers, Nat. Mater. 12 (2013) 836-841.
    [36]
    G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558.
    [37]
    G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
    [38]
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.
    [39]
    J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.
    [40]
    J.K. Noerskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108 (2004) 17886-17892.
    [41]
    H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 139 (2017) 10929-10936.
    [42]
    C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao, A. Du, J. Wang, Small Methods 3 (2019) 1800376.
    [43]
    S. Tang, Q. Dang, T. Liu, S. Zhang, Z. Zhou, X. Li, X. Wang, E. Sharman, Y. Luo, J. Jiang, J. Am. Chem. Soc. 142 (2020) 19308-19315.
    [44]
    J. Zhao, Z. Chen, J. Am. Chem. Soc. 139 (2017) 12480-12487.
    [45]
    W.Y. Yuan, L.F. Cheng, Y.N. Zhang, H. Wu, S.L. Lv, L.Y. Chai, X.H. Guo, L.X. Zheng, Adv. Mater. Interfac. 4 (2017) 11.
    [46]
    E. Pomerantseva, Y. Gogotsi, Nat. Energy 2 (2017) 17089.
    [47]
    Z.U.D. Babar, J. Fatheema, N. Arif, M.S. Anwar, S. Gul, M. Iqbal, S. Rizwan, RSC Adv. 10 (2020) 25669-25678.
    [48]
    C. Peng, P. Wei, X. Chen, Y.L. Zhang, F. Zhu, Y.H. Cao, H.J. Wang, H. Yu, F. Peng, Ceram. Int. 44 (2018) 18886-18893.
    [49]
    F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
    [50]
    A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Adv. Electron. Mater. 2 (2016) 1600255.
    [51]
    C. Zhang, M. Beidaghi, M. Naguib, M.R. Lukatskaya, M.-Q. Zhao, B. Dyatkin, K.M. Cook, S.J. Kim, B. Eng, X. Xiao, D. Long, W. Qiao, B. Dunn, Y. Gogotsi, Chem. Mater. 28 (2016) 3937-3943.
    [52]
    Z. Yue, D. Chu, H. Huang, J. Huang, P. Yang, Y. Du, M. Zhu, C. Lu, RSC Adv. 5 (2015) 47117-47124.
    [53]
    S.W. Song, J.Q. Liu, C.L. Zhou, Q. Jia, H. Luo, L.W. Deng, X.X. Wang, J. Alloys Compd. 843 (2020) 9.
    [54]
    H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, J. Am. Chem. Soc. 139 (2017) 16235-16247.
    [55]
    W.L. Zhang, J.M. Tian, H.B. Zeng, J.Q. Liu, Y. Tian, Chem. Eng. J. 366 (2019) 321-329.
    [56]
    M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, J. Am. Chem. Soc. 135 (2013) 15966-15969.
    [57]
    C.E. Ren, M.Q. Zhao, T. Makaryan, J. Halim, M. Boota, S. Kota, B. Anasori, M.W. Barsoum, Y. Gogotsi, Chemelectrochem 3 (2016) 689-693.
    [58]
    C.F. Shi, K.X. Xiang, Y.R. Zhu, X.H. Chen, W. Zhou, H. Chen, Electrochim. Acta 246 (2017) 1088-1096.
    [59]
    J. Kibsgaard, C. Tsai, K. Chan, J.D. Benck, J.K. Norskov, F. Abild-Pedersen, T.F. Jaramillo, Energy Environ. Sci. 8 (2015) 3022-3029.
    [60]
    X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Joule 2 (2018) 1610-1622.
    [61]
    W. Qiu, X.-Y. Xie, J. Qiu, W.-H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A.M. Asiri, G. Cui, B. Tang, X. Sun, Nat. Commun. 9 (2018) 3485.
    [62]
    J. Kong, A. Lim, C. Yoon, J.H. Jang, H.C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi, H.S. Park, ACS Sustain. Chem. Eng. 5 (2017) 10986-10995.
    [63]
    G. Watt, J. Chrisp, Clin. Chim. Acta 26 (1954) 452-453.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (73) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return