Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Yangshuo Li, Huiyong Wang, Bing Chang, Yingying Guo, Zhiyong Li, Shamraiz Hussain Talib, Zhansheng Lu, Jianji Wang. Intercalation assisted liquid phase production of disulfide zirconium nanosheets for efficient electrocatalytic dinitrogen reduction to ammonia. Green Energy&Environment, 2023, 8(4): 1174-1184. doi: 10.1016/j.gee.2022.01.009
Citation: Yangshuo Li, Huiyong Wang, Bing Chang, Yingying Guo, Zhiyong Li, Shamraiz Hussain Talib, Zhansheng Lu, Jianji Wang. Intercalation assisted liquid phase production of disulfide zirconium nanosheets for efficient electrocatalytic dinitrogen reduction to ammonia. Green Energy&Environment, 2023, 8(4): 1174-1184. doi: 10.1016/j.gee.2022.01.009

Intercalation assisted liquid phase production of disulfide zirconium nanosheets for efficient electrocatalytic dinitrogen reduction to ammonia

doi: 10.1016/j.gee.2022.01.009
  • Disulfide zirconium (ZrS2) is a two-dimensional (2D) transition metal disulfide and has given rise to extensive attention because of its distinctive electronic structure and properties. However, mass production of high quality of ZrS2 nanosheets to realize their practical application remains a challenge. Here, we have successfully exfoliated the bulk ZrS2 powder with the thickness of micron into single and few-layer nanosheets through liquid-phase exfoliation in N-methylpyrrolidone (NMP) assisted via aliphatic amines as intercalators. It is found that the exfoliation yield is as high as 27.3%, which is the record value for the exfoliation of ZrS2 nanosheets from bulk ZrS2 powder, and 77.1% of ZrS2 nanosheets are 2–3 layers. The molecular geometric size and aliphatic amine basicity have important impact on the exfoliation. Furthermore, the ZrS2 nanosheets have been used as catalyst in the electrocatalytic dinitrogen reduction with the NH3 yield of 57.75 μg h-1 mgcat.-1, which is twice that by ZrS2 nanofibers reported in literature and three times that by the bulk ZrS2 powder. Therefore, the liquid phase exfoliation strategy reported here has great potential in mass production of ZrS2 nanosheets for high activity electrocatalysis.

     

  • loading
  • [1]
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A Firsov, Science 306 (2004) 666-669.
    [2]
    H. Wang, X. Su, T. Song, Z. Li, Y. Zhao, H. Lou, J. Wang, Appl. Surf. Sci. 488 (2019) 656-661.
    [3]
    S. Lin, Y. Chui, Y. Li, S. Lau, FlatChem. 2 (2017) 15-37.
    [4]
    C. Tan, H. Zhang, Chem. Soc. Rev. 44 (2015) 2713-2731.
    [5]
    D. Sangian, Y. Ide, Y. Bando, A.E. Rowan, Y.Yamauchi, Small 14(2018) e1800551.
    [6]
    K. Varoon, X. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S.Maheshwari, A. Mittal, C. Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Science 334 (2011) 72-75.
    [7]
    S. Ding, W. Wang, Chem. Soc. Rev. 42 (2013) 548-568.
    [8]
    D. Liu, B. Liu, C. Wang, W. Jin, Q. Zha, G. Shi, D. Wang, X. Sang, C. Ni, ACS Sustain. Chem. Eng. 8 (2020) 2167-2175.
    [9]
    C. Chang, W. Chen, Y. Chen, Y. Chen, Y. Chen, F. Ding, C. Fan, H. J. Fan, Z. Fan, C. Gong, Y. Gong, Q. He, X. Hong, S. Hu, W. Hu, W. Huang, Y. Huang, W. Ji, D. Li, L.J. Li, Q. Li, L. Lin, C. Ling, M. Liu, N. Liu, Z. Liu, K. P. Loh, J. Ma, F. Miao, H. Peng, M. Shao, L. Song, S. Su, S. Sun, C. Tan, Z. Tang, D. Wang, H. Wang, J. Wang, X. Wang, X. Wang, A. T. S. Wee, Z. Wei, Y. Wu, Z.S. Wu, J. Xiong, Q. Xiong, W. Xu, P. Yin, H. Zeng, Z. Zeng, T. Zhai, H. Zhang, H. Zhang, Q. Zhang, T. Zhang, X. Zhang, L.D. Zhao, M. Zhao, W. Zhao, Y. Zhao, K.G. Zhou, X. Zhou, Y. Zhou, H. Zhu, H. Zhang, Z. Liu, Recent Progress on Two-dimensional Materials. Acta Phys. Chim. Sin. 37 (2021) 2108017.
    [10]
    S.B. Desai, S.R. Surabhi, A.B. Sachid, J.P. Llinas, Q.X. Wang, G.H. Ahn, G. Pitner, M.J. Kim, J. Bokor, C. Hu, H.S.P. Wong, J. Ali, Science 354 (2016) 99-102.
    [11]
    Z.N. Deng, H. Jiang, Y.J. Hu, Y. Liu, L. Zhang, H.L. Liu, C.Z. Li, Adv. Mater. 29 (2017) 1603020.
    [12]
    X. Xu, W. Yao, D. Xiao, T.F. Heinz, Nature Phys.10 (2014) 343-350.
    [13]
    H. Li, J. Wu, Z. Yin, H. Zhang, Acc. Chem. Res. 47 (2014)1067-1075.
    [14]
    W. Zhang, Z. Huang, W. Zhang, Y. Li, Nano. Res. 7 (2014) 1731-1737.
    [15]
    G. Fiori, B. Francesco, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Nature Nanotech. 9 (2014) 768-779.
    [16]
    R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, M. Terrones, Mauricio, Accounts Chem. Res.. 48 (2015)56-64.C. Backes, T.M. Higgins, A. Kelly, C. Boland, A. Harvey, D. Hanlon, J.N. Coleman, Chem. Mater. 29 (2016) 243-255.M. Zhang, Y. Zhu, X. Wang, Q. Feng, S. Qiao, W. Wen, Y. Chen, M. Cui, J. Zhang, C. Cai, L. Xie, J. Am. Chem. Soc. 137 (2015) 7051-7054.
    [17]
    S.G. Patel, S.K. Arora, M.K. Agarwal, Bull. Mater. Sci. 21 (1998) 297-301.F.A.S. Al-Alamy, A.A. Balchin, M. White, J. Mater. Sci. 12 (1977) 2037-2042.
    [18]
    Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angew Chem. Int. Ed. 50 (2011) 11093-11097.
    [19]
    L. Li, X. Fang, T. Zhai, M. Liao, U. K. Gautam, X. Wu, Y. Koide, Y. Bando, D. Golberg, Adv. Mater. 22 (2010) 4151-4156.
    [20]
    L. Li, H. Wang, X. Fang, T. Zhai, Y. Bando, D. Golberg, Energ. Environ. Sci. 4 (2011) 2586.
    [21]
    Y. Wen, Y. Zhu, S. Zhang, RSC Adv. 5 (2015) 66082-66085.
    [22]
    W. Tang, C. Yu, S. Zhang, S. Liu, X. Wu, H. Zhu, Nanomaterials 9 (2019) 329.
    [23]
    X. Wang, L. Huang, X.-W. Jiang, Y. Li, Z. Wei, J. Li, J. Mater. Chem. C. 4 (2016) 3143-3148.
    [24]
    S. Yang, P. Zhang, A. S. Nia, X. Feng, Adv. Mater. 32 (2020) e1907857.
    [25]
    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, Nat. Nanotechnol. 3 (2008) 563-568.
    [26]
    S. Jeong, D. Yoo, M. Ahn, P. Miro, T. Heine, J. Cheon, Nat. Commun. 6 (2015) 5763.
    [27]
    J. Hou, J. Yuan, W. Zhang, Y. Wang, X. Zhang, Green Energy Environ. 2020, https://doi.org/10.1016/j.gee.2020.10.003.
    [28]
    X. Wang, J. Bai, Y. Wang, X. Lu, Z. Zou, J. Huang, C. Xu, Green Energy Environ. 2020, https://doi.org/10.1016/j.gee.2020.11.016
    [29]
    G. Li, H. Jang, Z. Li, J. Wang, X. Ji, M. Kim, X. liu, J. Cho, Green Energy Environ. 2020, https://doi.org/10.1016/j.gee.2020.11.004
    [30]
    Y. Wan, H. Zhou, M. Zheng, Z. H. Huang, F. Kang, J. Li, R. Lv, Adv. Funct. Mater. 31(2021) 2100300.
    [31]
    S. H. Talib, Z. Lu, X. Yu, K. Ahmad, B. Bashir, Z. Yang, J. Li, ACS Catal. 11 (2021) 8929-8941.
    [32]
    J. Noerskov, J. Rossmeisl, Logadottir, A., L. Lindqvist, J. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108 (2004) 17886-17892.J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Noerskov, J. Electroanal. Chem. 607 (2007) 83-89.A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Noerskov, Enger. Environ. Sci. 3 (2010) 1311-1315.
    [33]
    Computational Chemistry Comparison and Benchmark Database. http://cccbdb.nist.gov/.
    [34]
    F.R. Gamble, J.H. Osiecki, M. Cais, R. Pishalvo, T.H. Geballe, Science 174 (1971) 493-497.
    [35]
    C. Huo, Z. Yan, X. Song, H. Zeng, Sci. Bull.. 60 (2015) 1994-2008.M. Kostecki, A.R. Olszyna, A. Sokolowska, Mater. Sci-Poland. 31 (2013) 165-172.
    [36]
    A.R. Beal, J.C. Knights, W.Y. Liang, J. Phys C: Phys. Solid. State. 5 (1972) 3531-3539.
    [37]
    P.G. Seybold, Int. J. Quant. Chem. 108 (2008) 2849-2855.D.H. Aue, H.M. Webb, M.T. Bowers, J. Am. Chem. Soc. 98 (1976) 311-317.
    [38]
    Y. Zhu, X. Wang, M. Zhang, C. Cai, L. Xie, Nano Research 9 (2016) 2931-2937.
    [39]
    S. Manas-Valero, V. Garcia-Lopez, A. Cantarero, M. Galbiati, Appl. Sci. 6 (2016) 264.
    [40]
    C.R. Whitehouse, H.P.B. Rimmington, A.A. Balchin, Phys Status Solidi A: Appl. Res. 18 (1973) 623-631.
    [41]
    Y. Shimazu, Y. Fujisawa, K. Arai, T. Iwabuchi, K. Suzuki, Chem. Nano. Mat. 4 (2018) 1078-1082.
    [42]
    D. E. Thomas, J. Appl. Phys. 19 (1948) 190-193.
    [43]
    Q. Xin, X. Zhao, X. Ma, N. Wu, X. Liu, S. Wei, J. Physica E: Low-dimensional Systems and Nanostructures 93 (2017) 87-91.
    [44]
    N.N. Som, P.K. Jha, Int. J. Hydrogen Energ. 45 (2019) 23920-23927.
    [45]
    B. Qi, Y. Li, H. Wang, G. Yang, Y. Cao, H. Yu, Q. Zhang, H. Liang, F. Peng, Nano Energy 60 (2019) 43-51.L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, S. Wei, J. Am. Chem. Soc. 137 (2015) 2622-2627.
    [46]
    T. Xu, D. Ma, T. Li, L. Yue, Y. Luo, S. Lu, X. Shi, A. M. Asiri, C. Yang, X. Sun, Chem. Commun. 56 (2020) 14031-14034.
    [47]
    S.H. Talib, X. Yu, Z. Lu, K. Ahmad, T. Yang, H. Xiao, J. Li, J. Mater.Chem. A 10 (2022) 6165–6177.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (134) PDF downloads(4) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return