Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Bolin Wang, Chunxiao Jin, Shujuan Shao, Yuxue Yue, Yuteng Zhang, Saisai Wang, Renqin Chang, Haifeng Zhang, Jia Zhao, Xiaonian Li. Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy&Environment, 2023, 8(4): 1128-1140. doi: 10.1016/j.gee.2022.01.005
Citation: Bolin Wang, Chunxiao Jin, Shujuan Shao, Yuxue Yue, Yuteng Zhang, Saisai Wang, Renqin Chang, Haifeng Zhang, Jia Zhao, Xiaonian Li. Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy&Environment, 2023, 8(4): 1128-1140. doi: 10.1016/j.gee.2022.01.005

Electron-deficient Cu site catalyzed acetylene hydrochlorination

doi: 10.1016/j.gee.2022.01.005
  • Rational design of catalytic sites to activate the C≡C bond is of paramount importance to advance acetylene hydrochlorination. Herein, Cu sites with electron-rich and electron-deficient states were constructed by controlling the impregnation solutions. The π electrons flowing from acetylene to Cu site are facilitated over the electron-deficient Cu sites, achieving high activation of C≡C bond. The contradiction between the increased activation of acetylene required for enhanced catalytic activity and the resistance of Cu site to reduction by acetylene required for maintaining catalytic stability can be balanced by establishing strong interactions of Cu site with pyrrolic-N species. The catalytic activity displays a volcano shape scaling relationship as a function of Cu particle size. Tribasic copper chloride is concomitantly generated with the construction of electron-deficient Cu sites. The H–Cl bond of HCl can be activated over the tribasic copper chloride, accelerating the surface reaction of vinyl chloride production. This strategy of inducing electron deficiency provides new insight into the rational design of catalysts for the synthesis of vinyl chloride with a high catalytic performance.

     

  • loading
  • [1]
    X. Sun, S.R. Dawson, T.E. Parmentier, G. Malta, T.E. Davies, Q. He, L. Lu, D.J. Morgan, N. Carthey, P. Johnston, S.A. Kondrat, S.J. Freakley, C.J. Kiely, G.J. Hutchings, Facile synthesis of precious-metal single-site catalysts using organic solvents. Nat. Chem., 2020, 12, 560-567.
    [2]
    G. Malta, S.A. Kondrat, S.J. Freakley, C.J. Davies, S. Dawson, X. Liu, L. Lu, K. Dymkowski, F. Fernandez-Alonso, S. Mukhopadhyay, E.K. Gibson, P.P. Wells, S.F. Parker, C.J. Kiely, G.J. Hutchings, Deactivation of a Single-Site Gold-on-Carbon Acetylene Hydrochlorination Catalyst: An X-ray Absorption and Inelastic Neutron Scattering Study. ACS Catal., 2018, 8, 8493-8505.
    [3]
    B. Wang, Y. Yue, X. Pang, M. Yu, T. Wang, R. Chang, Z. Pan, J. Zhao, X. Li. Nature of HCl oxidation Au anomalies and activation of non-carbon- material-supported Au catalyst. J. Catal., 2021, 404, 198-203.
    [4]
    P. Johnston, N. Carthey, G.J. Hutchings, Discovery, Development, and Commercialization of Gold Catalysts for Acetylene Hydrochlorination. J. Am. Chem. Soc., 2015, 137, 14548-14557.
    [5]
    R. Lin, S.K. Kaiser, R. Hauert, J. Perez-Ramirez, Descriptors for High-Performance Nitrogen-Doped Carbon Catalysts in Acetylene Hydrochlorination. ACS Catal., 2018, 8, 1114-1121.
    [6]
    B. Wang, Y. Yue, C. Jin, J. Lu, S. Wang, L. Yu, L. Guo, R. Li, Z.-T. Hu, Z. Pan, J. Zhao, X. Li, Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism. Appl. Catal. B: Environ., 2020, 272, 118944-118954.
    [7]
    S.K. Kaiser, A.H. Clark, L. Cartocci, F. Krumeich, J. Perez-Ramirez, Sustainable Synthesis of Bimetallic Single Atom Gold-Based Catalysts with Enhanced Durability in Acetylene Hydrochlorination. Small, 2021,17, 2004599-2004604.
    [8]
    J. Zhong, Y. Xu, Z. Liu, Heterogeneous non-mercury catalysts for acetylene hydrochlorination: progress, challenges, and opportunities. Green. Chem., 2018, 20, 2412-2427.
    [9]
    Z. Chen, Y. Chen, S. Chao, X. Dong, W. Chen, J. Luo, C. Liu, D. Wang, C. Chen, W. Li, J. Li, Y. Li, Single-Atom AuI-N3 Site for Acetylene Hydrochlorination Reaction. ACS Catal., 2020, 10, 1865-1870.
    [10]
    S. Shang, W. Zhao, Y. Wang, X. Li, J. Zhang, Y. Han, W. Li, Highly Efficient Ru@IL/AC To Substitute Mercuric Catalyst for Acetylene Hydrochlorination. ACS Catal., 2017, 7, 3510-3520.
    [11]
    G. Malta, S.A. Kondrat, S.J. Freakley, D.J. Morgan, E.K. Gibson, P.P. Wells, M. Aramini, D. Gianolio, P.B.J. Thompson, P. Johnston, G.J. Hutchings, In situ K-edge X-ray absorption spectroscopy of the ligand environment of single-site Au/C catalysts during acetylene hydrochlorination. Chem. Sci., 2020, 11, 7040-7052.
    [12]
    J. Zhao, S. Wang, B. Wang, Y. Yue, C. Jin, J. Lu, Z. Fang, X. Pang, F. Feng, L. Guo, Z. Pan, X. Li, Acetylene hydrochlorination over supported ionic liquid phase (SILP) gold-based catalyst: Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms. Chin. J. Catal., 2021, 42, 334-346.
    [13]
    L. Ye, X. Duan, S. Wu, T.S. Wu, Y. Zhao, A.W. Robertson, H.L. Chou, J. Zheng, T. Ayvali, S. Day, C. Tang, Y.L. Soo, Y. Yuan, S.C.E. Tsang, Self- regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nat. Commun., 2019, 10, 914-923.
    [14]
    B. Wang, Y. Yue, S. Wang, S. Shao, Z. Chen, X. Fang, X. Pang, Z. Pan, J. Zhao, X. Li, Stabilizing supported gold catalysts in acetylene hydrochlorination by constructing an acetylene-deficient reaction phase. Green. Energy. Environ., 2021, 6, 9-14.
    [15]
    S.K. Kaiser, R. Lin, S. Mitchell, E. Fako, F. Krumeich, R. Hauert, O.V. Safonova, V.A. Kondratenko, E.V. Kondratenko, S.M. Collins, P.A. Midgley, N. Lopez, J. Perez-Ramirez, Controlling the speciation and reactivity of carbon supported gold nanostructures for catalysed acetylene hydrochlorination. Chem. Sci., 2019, 10, 359-369.
    [16]
    S. A. Mitchenko, T. V. Krasnyakova, I. V. Zhikharev, Effect of mechanicochemical treament on the avtivity of K2PdCl4 in the heterogeneous catalytic hydrochlorination of acetylene. Theor. Exp. Chem., 2010, 46, 32-38.
    [17]
    T.V. Krasnyakova, D.V. Nikitenko, S.A. Mitchenko, Mechanisms of the Catalytic Hydrochlorination of Acetylene: Active Sites, Isotope Effects, and Stereoselectivity. Kinet. Catal., 2020, 61, 58-79.
    [18]
    J. Hu, Q. Yang, L. Yang, Z. Zhang, B. Su, Z. Bao, Q. Ren, H. Xing, S. Dai, Confining Noble Metal (Pd, Au, Pt) Nanoparticles in Surfactant Ionic Liquids: Active Non-Mercury Catalysts for Hydrochlorination of Acetylene. ACS Catal., 2015, 5, 6724-6731.
    [19]
    Y. Cen, Y. Yue, S. Wang, J. Lu, B. Wang, C. Jin, L. Guo, Z.-T. Hu, J. Zhao, Adsorption Behavior and Electron Structure Engineering of Pd-Based Catalysts for Acetylene Hydrochlorination. Catalysts, 2020, 10, 24-37.
    [20]
    J. Zhao, Y. Yue, G. Sheng, B. Wang, H. Lai, S. Di, Y. Zhai, L. Guo, X. Li, Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene. Chem. Eng. J., 2019, 360, 38-46.
    [21]
    S.A. Mitchenko, E.V. Khomutov, A.A. Shubin, Yu. M. Shul’ga, Mechanochemical activation of K2PtCl6: heterogenous catalyst for gas-phase hydrochlorination of acetylene. Theor. Exp. Chem., 2003, 39, 255-258.
    [22]
    S.A. Mitchenko, T.V. Krasnyakova, R.S. Mitchenko, A.N. Korduban, Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4 salt. J. Mol. Catal. A: Chem., 2007, 275, 101-108.
    [23]
    S.A. Mitchenko, T.V. Krasnyakova, Acetylene Hydrochlorination over Mechanically Activated K2MCl4 (M = Pt, Pd) and K2PtCl6 Catalysts: The HCl/DCl Kinetic Isotope Effect and Reaction Mechanisms. Kinet. Catal., 2014, 55, 722-728.
    [24]
    S.K. Kaiser, E. Fako, G. Manzocchi, F. Krumeich, R. Hauert, A.H. Clark, O.V. Safonova, N. Lopez, J. Perez-Ramirez, Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal., 2020, 3, 376-385.
    [25]
    B. Wang, Y. Yue, S. Wang, Z. Chen, L. Yu, S. Shao, G. Lan, Z. Pan, J. Zhao, X. Li. Constructing and controlling ruthenium active phases for acetylene hydrochlorination. Chem. Commun., 2020, 56, 10722-10725.
    [26]
    Y. Jin, G. Li, J. Zhang, Y. Pu, W. Li, Effects of potassium additive on the activity of Ru catalyst for acetylene hydrochlorination. RSC Adv., 2015, 5, 37774-37779.
    [27]
    J. Zhang, W. Sheng, C. Guo, W. Li, Acetylene hydrochlorination over bimetallic Ru-based Catalysts. RSC Adv., 2013, 3, 21062-21068.
    [28]
    Y. Han, H. Zhang, Y. Li, Y. Nian, W. Li, J. Zhang, Ruthenium catalyst coordinated with [N+4444][PF-6 ] ionic liquid for acetylene hydrochlorination. Catal. Today, 2020, 355, 205-213.
    [29]
    S.K. Kaiser, R. Lin, F. Krumeich, O.V. Safonova, J. Perez-Ramirez, Preserved in a Shell: High-Performance Graphene-Confined Ruthenium Nanoparticles in Acetylene Hydrochlorination. Angew. Chem. Inter. Edi., 2019,131, 2-10.
    [30]
    H. Li, B. Wu, J. Wang, F. Wang, X. Zhang, G. Wang, H. Li, Efficient and stable Ru(III)-choline chloride catalyst system with low Ru content for non-mercury acetylene hydrochlorination. Chin. J. Catal., 2018, 39, 1770-1781.
    [31]
    Y. Han, Y. Wang, Y. Wang, Y. Hu, Y. Nian, W. Li, J. Zhang, Pyrrolidone ligand improved Cu-based catalysts with high performance for acetylene hydrochlorination. Appl. Organomet. Chem., 2020, 35, e6066.
    [32]
    Y. Hu, Y. Wang, Y. Wang, W. Li, J. Zhang, Y. Han, High performance of supported Cu-based catalysts modulated via phosphamide coordination in acetylene hydrochlorination. Appl. Catal. A: Gen., 2020, 591, 117408-117417.
    [33]
    Y. Yu, Y. Yue, B. Wang, H. He, Z.-T. Hu, J. Zhao, X. Li, Synergy between Ionic Liquids and CuCl2 in Gas-Liquid Phase Reactions of Acetylene Hydrochlorination. Catalysts, 2019, 9, 504-525.
    [34]
    Y. Wang, Y. Nian, J. Zhang, W. Li, Y. Han, MOMTPPC improved Cu-based heterogeneous catalyst with high efficiency for acetylene hydrochlorination. Mol. Catal., 2019, 479, 110612-110622.
    [35]
    X. Wang, M. Zhu, B. Dai, Effect of Phosphorus Ligand on Cu-Based Catalysts for Acetylene Hydrochlorination. ACS Sustain. Chem. Eng., 2019, 7, 6170-6177.
    [36]
    G. Qin, Y. Song, R. Jin, J. Shi, Z. Yu, S. Cao, Gas-liquid acetylene hydrochlorination under nonmercuric catalysis using ionic liquids as reaction media. Green. Chem., 2011, 13, 1495-1498.
    [37]
    H. Xu, J.K. Si, G.H. Luo, The Kinetics Model and Fixed Bed Reactor Simulation of Cu Catalyst for Acetylene Hydrochlorination. Int. J. Chem. React. Eng., 2017, 15, 20160165-20160179.
    [38]
    W. Zhao, M. Zhu, B. Dai, The Preparation of Cu-g-C3N4/AC Catalyst for Acetylene Hydrochlorination. Catalysts, 2016, 6, 193-203.
    [39]
    C. Zhao, X. Zhang, Z. He, Q. Guan, W. Li, Demystifying the mechanism of NMP ligands in promoting Cu-catalyzed acetylene hydrochlorination: insights from a density functional theory study. Inorg. Chem. Front., 2020, 7, 3204-3216.
    [40]
    B. Wang, Y. Yue, X. Pang, W. Zhu, Z. Chen, S. Shao, T. Wang, Z. Pan, X. Li, J. Zhao, Synergistic effect of two action sites on a nitrogen-doped carbon catalyst towards acetylene hydrochlorination. Phys. Chem. Chem. Phys., 2020, 22, 20995-20999.
    [41]
    K. Zhou, J. Si, J. Jia, J. Huang, J. Zhou, G. Luo, F. Wei, Reactivity enhancement of N-CNTs in green catalysis of C2H2 hydrochlorination by a Cu catalyst. RSC Adv., 2014, 4, 7766-7769.
    [42]
    H. Li, F. Wang, W. Cai, J. Zhang, X. Zhang, Hydrochlorination of acetylene using supported phosphorus-doped Cu-based catalysts. Catal. Sci. Technol., 2015, 5, 5174-5184.
    [43]
    H. Chen, Y. Xu, K. Zhu, H. Zhang, Understanding oxygen-deficient La2CuO4-delta perovskite activated peroxymonosulfate for bisphenol A degradation: The role of localized electron within oxygen vacancy. Appl. Catal. B. Environ., 2021, 284, 119732-119744.
    [44]
    T. Chen, Z.L. Zhu, H. Zhang, Y.L. Qiu, D.Q. Yin, G.H. Zhao, Facile Construction of a Copper-Containing Covalent Bond for Peroxymonosulfate Activation: Efficient Redox Behavior of Copper Species via Electron Transfer Regulation, ACS Appl. Mater. Inter., 2020, 12, 42790-42802.
    [45]
    X.M. Lv, L.M. Shang, S. Zhou, S. Li, Y.H. Wang, Z.Q. Wang, T.K. Sham, C. Peng, G.F. Zheng, Electron-Deficient Cu Sites on Cu3Ag1 Catalyst Promoting CO2 Electroreduction to Alcohols, Adv. Energy Mater., 2020,10, 2001987-2001994.
    [46]
    Y. Zhai, J. Zhao, X. Di, S. Di, B. Wang, Y. Yue, G. Sheng, H. Lai, L. Guo, H. Wang, X. Li, Carbon-supported perovskite-like CsCuCl3 nanoparticles: a highly active and cost-effective heterogeneous catalyst for the hydrochlorination of acetylene to vinyl chloride. Catal. Sci. Technol., 2018, 8, 2901-2908.
    [47]
    B. Wang, J. Zhao, Y. Yue, G. Sheng, H. Lai, J. Rui, H. He, Z. Hu, F. Feng, Q. Zhang, L. Guo, X. Li, Carbon with Surface-Enriched Nitrogen and Sulfur Supported Au Catalysts for Acetylene Hydrochlorination. ChemCatChem, 2019, 11, 1002-1009.
    [48]
    S. Buchele, Z. Chen, S. Mitchell, R. Hauert, F. Krumeich, J. Perez-Ramirez, Tailoring Nitrogen-Doped Carbons as Hosts for Single-Atom Catalysts. ChemCatChem, 2019, 11, 2812-2820.
    [49]
    X. Dong, S. Chao, F. Wan, Q. Guan, G. Wang, W. Li, Sulfur and nitrogen co-doped mesoporous carbon with enhanced performance for acetylene hydrochlorination. J. Catal., 2018, 359, 161-170.
    [50]
    J. Zhao, B. Wang, Y. Yue, G. Sheng, H. Lai, S. Wang, L. Yu, Q. Zhang, F. Feng, Z.-T. Hu, X. Li, Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene Hydrochlorination. J. Catal., 2019, 373, 240-249.
    [51]
    X. Qiao, Z. Zhou, X. Liu, C. Zhao, Q. Guan, W. Li, Constructing a fragmentary g-C3N4 framework with rich nitrogen defects as a highly efficient metal-free catalyst for acetylene hydrochlorination. Catal. Sci. Technol., 2019, 9, 3753-3762.
    [52]
    P.X. Qiu, C.M. Xu, H. Chen, F. Jiang, X. Wang, R.F. Lu, X.R. Zhang, One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity, Appl. Catal. B. Environ., 2017,206, 319-327.
    [53]
    H. Song, Z. Guan, D. Xia, H. Xu, F. Yang, D. Li, X. Li, Copper-oxygen synergistic electronic reconstruction on g-C3N4 for efficient non-radical catalysis for peroxydisulfate and peroxymonosulfate, Sep. Purif. Technol., 2021, 257, 117957-117966.
    [54]
    H. Xu, G. Luo, Green production of PVC from laboratory to industrialization: State-of-the-art review of heterogeneous non-mercury catalysts for acetylene Hydrochlorination. J. Ind. Eng. Chem., 2018, 65, 13-25.
    [55]
    R. Li, Y. Yue, Z. Chen, X. Chen, S. Wang, Z. Jiang, B. Wang, Q. Xu, D. Han, J. Zhao, Selective hydrogenation of acetylene over Pd-Sn catalyst: Identification of Pd2Sn intermetallic alloy and crystal plane-dependent performance. Appl. Catal. B: Environ., 2020, 279, 119348-119358.
    [56]
    L. Zhang, S. Jiao, X. Tan, Y. Yuan, Y. Xiang, Y.-J. Zeng, J. Qiu, P. Peng, S.C. Smith, H. Huang, Theory-guided construction of electron-deficient sites via removal of lattice oxygen for the boosted electrocatalytic synthesis of ammonia. Nano Res., 2020, 14, 1457-1464.
    [57]
    B. Li, X. Sun, D. Su, Calibration of the basic strength of the nitrogen groups on the nanostructured carbon materials. Phys. Chem. Chem. Phys., 2015, 17, 6691-6694.
    [58]
    B. Wang, H. Lai, Y. Yue, G. Sheng, Y. Deng, H. He, L. Guo, J. Zhao, X. Li, Zeolite Supported Ionic Liquid Catalysts for the Hydrochlorination of Acetylene. Catalysts, 2018, 8, 351-364.
    [59]
    B. Wang, Z. Jiang, T. Wang, Q. Tang, M. Yu, T. Feng, M. Tian, R. Chang, Y. Yue, Z. Pan, J. Zhao, X. Li. Controllable synthesis of Vacancy-Defect Cu Site and its catalysis for the manufacture of vinyl chloride monomer. ACS Catal., 2021, 11, 11016-11028.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return