Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Chengwei Ma, Xinyu Zhang, Chengcai Liu, Yuanxing Zhang, Yuanshen Wang, Ling Liu, Zhikun Zhao, Borong Wu, Daobin Mu. Nano silica aerogel-induced formation of an organic/alloy biphasic interfacial layer enables construction of stable high-energy lithium metal batteries. Green Energy&Environment, 2023, 8(4): 1071-1080. doi: 10.1016/j.gee.2021.12.006
Citation: Chengwei Ma, Xinyu Zhang, Chengcai Liu, Yuanxing Zhang, Yuanshen Wang, Ling Liu, Zhikun Zhao, Borong Wu, Daobin Mu. Nano silica aerogel-induced formation of an organic/alloy biphasic interfacial layer enables construction of stable high-energy lithium metal batteries. Green Energy&Environment, 2023, 8(4): 1071-1080. doi: 10.1016/j.gee.2021.12.006

Nano silica aerogel-induced formation of an organic/alloy biphasic interfacial layer enables construction of stable high-energy lithium metal batteries

doi: 10.1016/j.gee.2021.12.006
  • Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome, e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity (0.6 mS cm-1 at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/LiF biphasic interface layer, suggesting that the Li–Si alloy and LiF-rich interface layer promoted rapid Li+ transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency (99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries.

     

  • loading
  • [1]
    J. Liu, Z.N. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q.Y. Li, B.Y. Liaw, P. Liu, A. Manthiram, Y.S. Meng, V.R. Subramanian, M.F. Toney, V.V. Viswanathan, M.S. Whittingham, J. Xiao, W. Xu, J.H. Yang, X.Q. Yang, J.G. Zhang, Nat. Energy 4 (2019) 180-186.
    [2]
    D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo, W. Liu, L. Yang, J. Lu, K. Amine, Z. Chen, Chem. Soc. Rev. 49 (2020) 5407-5445.
    [3]
    D. Lin, Y. Liu, Y. Cui, Nat Nanotechnol. 12 (2017) 194-206.
    [4]
    X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Chem. Rev. 117 (2017) 10403-10473.
    [5]
    P. Albertus, S. Babinec, S. Litzelman, A. Newman, Nat. Energy 3 (2018) 16-21.
    [6]
    H.J. Lv, C.L. Li, Z.K. Zhao, B.R. Wu, D.B. Mu, Journal of Energy Chemistry 60 (2021) 435-450.
    [7]
    A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Chemical Reviews 114 (2014) 11751-11787.
    [8]
    J. Zheng, M.S. Kim, Z. Tu, S. Choudhury, T. Tang, L.A. Archer, Chem. Soc. Rev. 49 (2020) 2701-2750.
    [9]
    A.M. Tripathi, W.N. Su, B.J. Hwang, Chem. Soc. Rev. 47 (2018) 736-851.
    [10]
    E. Peled, S. Menkin, Journal of the Electrochemical Society 164 (2017) A1703-A1719.
    [11]
    X.Q. Zhang, T. Li, B.Q. Li, R. Zhang, P. Shi, C. Yan, J.Q. Huang, Q. Zhang, Angew Chem Int Ed 59 (2020) 3252-3257.
    [12]
    P.B. Zhai, L.X. Liu, X.K. Gu, T.S. Wang, Y.J. Gong, Advanced Energy Materials 10 (2020) 32.
    [13]
    W. Guo, Q. Han, J. Jiao, W. Wu, X. Zhu, Z. Chen, Y. Zhao, Angew Chem Int Ed 60 (2021) 7267-7274.
    [14]
    Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D.G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C.V. Amanchukwu, S.T. Hung, Y. Ma, E.G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy 5 (2020) 526-533.
    [15]
    X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. Wang, Nat. Energy 4 (2019) 882-890.
    [16]
    X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.-C. Liou, K. Amine, K. Xu, C. Wang, Nature Nanotechnology 13 (2018) 715-722.
    [17]
    Z.X. Wang, F.L. Qi, L.C. Yin, Y. Shi, C.G. Sun, B.G. An, H.M. Cheng, F. Li, Advanced Energy Materials 10 (2020) 9.
    [18]
    Y.L. Xiao, B. Han, Y. Zeng, S.S. Chi, X.Z. Zeng, Z.J. Zheng, K. Xu, Y.H. Deng, Advanced Energy Materials 10 (2020) 8.
    [19]
    J.L. Fu, X. Ji, J. Chen, L. Chen, X.L. Fan, D.B. Mu, C.S. Wang, Angew Chem Int Ed 59 (2020) 22194-22201.
    [20]
    C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang, J.Q. Huang, Q. Zhang, Angew Chem Int Ed 57 (2018) 14055-14059.
    [21]
    Y. An, Y. Tian, Y. Zhang, C. Wei, L. Tan, C. Zhang, N. Cui, S. Xiong, J. Feng, Y. Qian, ACS Nano 14 (2020) 17574-17588.
    [22]
    L. Liu, Y.X. Yin, J.Y. Li, N.W. Li, X.X. Zeng, H. Ye, Y.G. Guo, L.J. Wan, Joule 1 (2017) 563-575.
    [23]
    F.H. Guo, C. Wu, H. Chen, F.P. Zhong, X.P. Ai, H.X. Yang, J.F. Qian, Energy Storage Mater. 24 (2020) 635-643.
    [24]
    D.C. Lin, Y.Y. Liu, Z. Liang, H.W. Lee, J. Sun, H.T. Wang, K. Yan, J. Xie, Y. Cui, Nature Nanotechnology 11 (2016) 626.
    [25]
    B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, J. Zhu, Adv Mater 29 (2017) 1603755.
    [26]
    N.W. Li, Y. Shi, Y.X. Yin, X.X. Zeng, J.Y. Li, C.J. Li, L.J. Wan, R. Wen, Y.G. Guo, Angew Chem Int Ed 57 (2018) 1505-1509.
    [27]
    J. Lopez, A. Pei, J.Y. Oh, G.N. Wang, Y. Cui, Z. Bao, J. Am. Chem. Soc. 140 (2018) 11735-11744.
    [28]
    X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X.Q. Sun, L.F. Nazar, Nature Energy 2 (2017) 7.
    [29]
    Y. Zhao, G. Li, Y. Gao, D. Wang, Q. Huang, D. Wang, ACS Energy Letters 4 (2019) 1271-1278.
    [30]
    Y. Gao, Z. Yan, J.L. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y.C. Li, H. Wang, S.H. Kim, T.E. Mallouk, D. Wang, Nat. Mater. 18 (2019) 384-389.
    [31]
    W. Zhang, S. Zhang, L. Fan, L. Gao, X. Kong, S. Li, J. Li, X. Hong, Y. Lu, ACS Energy Letters 4 (2019) 644-650.
    [32]
    C.W. Ma, G. Mu, H.J. Lv, C.C. Liu, J.Y. Bi, J.L. Fu, D.B. Mu, B.R. Wu, F. Wu, Materials Chemistry Frontiers 5 (2021) 5082-5092.
    [33]
    S.J. Xu, Z.H. Sun, C.G. Sun, F. Li, K. Chen, Z.H. Zhang, G.J. Hou, H.M. Cheng, F. Li, Advanced Functional Materials 30 (2020) 9.
    [34]
    S. Stegmaier, R. Schierholz, I. Povstugar, J. Barthel, S.P. Rittmeyer, S.C. Yu, S. Wengert, S. Rostami, H. Kungl, K. Reuter, R.A. Eichel, C. Scheurer, Advanced Energy Materials 11 (2021) 10.
    [35]
    X. Ji, S.Y. Hou, P.F. Wang, X.Z. He, N. Piao, J. Chen, X.L. Fan, C.S. Wang, Advanced Materials 32 (2020) 9.
    [36]
    W. Luo, Y. Gong, Y. Zhu, K.K. Fu, J. Dai, S.D. Lacey, C. Wang, B. Liu, X. Han, Y. Mo, E.D. Wachsman, L. Hu, J. Am. Chem. Soc. 138 (2016) 12258-12262.
    [37]
    Y. Li, X. Chen, A. Dolocan, Z. Cui, S. Xin, L. Xue, H. Xu, K. Park, J.B. Goodenough, J Am Chem Soc 140 (2018) 6448-6455.
    [38]
    Q. Wang, B. Liu, Y. Shen, J. Wu, Z. Zhao, C. Zhong, W. Hu, Advanced Science 8 (2021) 2101111.
    [39]
    C. Wu, F. Guo, L. Zhuang, X. Ai, F. Zhong, H. Yang, J. Qian, ACS Energy Letters 5 (2020) 1644-1652.
    [40]
    R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami, F. Wu, A. Chaudhary, N. Ghimire, B. Zhou, W.H. Zhang, Y. Zhou, Q. Qiao, Advanced Energy Materials 9 (2019) 1901486.
    [41]
    M. Schnabel, S.P. Harvey, E. Arca, C. Stetson, G. Teeter, C. Ban, P. Stradins, ACS Applied Materials & Interfaces 12 (2020) 27017-27028.
    [42]
    Y. Xu, C. Stetson, K. Wood, E. Sivonxay, C. Jiang, G. Teeter, S. Pylypenko, S.-D. Han, K.A. Persson, A. Burrell, A. Zakutayev, ACS Applied Materials & Interfaces 10 (2018) 38558-38564.
    [43]
    C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng, R. Xu, J.-Q. Huang, Q. Zhang, J. Am. Chem. Soc. 141 (2019) 9422-9429.
    [44]
    R. Xu, X. Shen, X.X. Ma, C. Yan, X.Q. Zhang, X. Chen, J.F. Ding, J.Q. Huang, Angew Chem Int Ed. 60 (2021) 4215-4220.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return