Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Guolang Zhou, Linlin Chen, Xiaowei Li, Guiling Luo, Zhendong Yu, Jingzhou Yin, Lei Fan, Yanhong Chao, Lei Jiang, Wenshuai Zhu. Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine. Green Energy&Environment, 2023, 8(4): 1081-1090. doi: 10.1016/j.gee.2021.12.002
Citation: Guolang Zhou, Linlin Chen, Xiaowei Li, Guiling Luo, Zhendong Yu, Jingzhou Yin, Lei Fan, Yanhong Chao, Lei Jiang, Wenshuai Zhu. Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine. Green Energy&Environment, 2023, 8(4): 1081-1090. doi: 10.1016/j.gee.2021.12.002

Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine

doi: 10.1016/j.gee.2021.12.002
  • The extraction of lithium from salt lakes or seawater has attracted worldwide attention because of the explosive growth of global demand for lithium products. The LiMn2O4-based electrochemical lithium recovery system is one of the strongest candidates for commercial application due to its high inserted capacity and low energy consumption. However, the surface orientation of LiMn2O4 that facilitates Li diffusion happens to be prone to manganese dissolution making it a great challenge to obtain high lithium inserted capacity and long life simultaneously. Herein, we address this problem by designing a truncated octahedral LiMn2O4 (Tr-oh LMO) in which the dominant (111) facets minimize Mn dissolution while a small portion of (100) facets facilitate the Li diffusion. Thus, this Tr-oh LMO-based electrochemical lithium recovery system shows excellent Li recovery performance with high inserted capacity (20.25 mg g-1 per cycle) in simulated brine. In addition, the dissolution rate of manganese per 30 cycles is only 0.44% and the capacity maintained 85% of the initial after 30 cycles. These promising findings accelerate the practical application of LiMn2O4 in electrochemical lithium recovery.

     

  • loading
  • [1]
    Y. Yang, Green Energy Environ. 5 (2020) 382-384.
    [2]
    A. Battistel, M.S. Palagonia, D. Brogioli, F. La Mantia, R. Trocoli, Adv. Mater 32 (2020) 1905440.
    [3]
    L. Chen, Y. Chao, X. Li, G. Zhou, Q. Lu, M. Hua, H. Li, X. Ni, P. Wu, W. Zhu, Green Chem. 23 (2021) 2177-2184.
    [4]
    Y. Zhao, H. Wang, Y. Li, M. Wang, X. Xiang, Desalination 493 (2020) 114620.
    [5]
    Y. Zhao, X. Xiang, M. Wang, H. Wang, Y. Li, J. Li, H. Yang, Desalination 512 (2021) 115126.
    [6]
    Y. Sun, Q. Wang, Y. Wang, R. Yun, X. Xiang, Sep. Purif. Technol. 256 (2021) 117807.
    [7]
    L. Zhang, X. Wu, W. Qian, H. Zhang, S. Zhang, Green Energy Environ. 6 (2021) 5-8.
    [8]
    D. Zha, Y. Fu, X. Gao, L. Zhang, X. Wang, Electrochim. Acta 257 (2017) 494-503.
    [9]
    Y. Fu, C. Peng, D. Zha, J. Zhu, L. Zhang, X. Wang, Electrochim. Acta 271 (2018) 137-145.
    [10]
    X. Shang, B. Hu, P. Nie, W. Shi, T. Hussain, J. Liu, Sep. Purif. Technol. 258 (2021) 118009.
    [11]
    Y. Sun, X. Guo, S. Hu, X. Xiang, J. Energy Chem. 34 (2019) 80-87.
    [12]
    C. Gao, H. Liu, S. Bi, H. Li, C. Ma, Green Energy Environ. 6 (2021) 114-123.
    [13]
    X. Zhao, M. Feng, Y. Jiao, Y. Zhang, Y. Wang, Z. Sha, Desalination 481 (2020) 114360.
    [14]
    B.K. Pramanik, L.D. Nghiem, F.I. Hai, Water Res. 168 (2020) 115149.
    [15]
    P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Nat. Rev. Mater. 5 (2020) 517-538.
    [16]
    X. Meng, Y. Xu, H. Cao, X. Lin, P. Ning, Y. Zhang, Y.G. Garcia, Z. Sun, Green Energy Environ. 5 (2020) 22-36.
    [17]
    S. Hu, Y. Sun, M. Pu, R. Yun, X. Xiang, Sep. Purif. Technol. 229 (2019) 115813.
    [18]
    W. Chen, X. Li, L. Chen, G. Zhou, Q. Lu, Y. Huang, Y. Chao, W. Zhu, Chem. Eng. J. 420 (2021) 127648.
    [19]
    X. Li, Y. Chao, L. Chen, W. Chen, J. Luo, C. Wang, P. Wu, H. Li, W. Zhu, Chem. Eng. J. 392 (2020) 123731.
    [20]
    X. Li, L. Chen, Y. Chao, W. Chen, J. Luo, J. Xiong, F. Zhu, X. Chu, H. Li, W. Zhu, Chem. Eng. Technol. 43 (2020) 1784-1791.
    [21]
    C. Zhang, Y. Mu, S. Zhao, W. Zhang, Y. Wang, Desalination 496 (2020) 114710.
    [22]
    C. Zhang, Y. Mu, W. Zhang, S. Zhao, Y. Wang, J. Membr. Sci. 596 (2020) 117724.
    [23]
    H. Lin, X. Yu, M. Li, J. Duo, Y. Guo, T. Deng, ACS Appl. Mater. Interfaces 11 (2019) 26364-26372.
    [24]
    Y. Jang, E. Chung, Ind. Eng. Chem. Res. 58 (2019) 21897-21903.
    [25]
    Y. Mu, C. Zhang, W. Zhang, Y. Wang, Desalination 511 (2021) 115112.
    [26]
    L. Ye, C. Wang, L. Cao, H. Xiao, J. Zhang, B. Zhang, X. Ou, Green Energy Environ. 6 (2021) 725-733.
    [27]
    J. Wang, X. Yue, P. Wang, T. Yu, X. Du, X. Hao, A. Abudula, G. Guan, Renew. Sust. Energ. Rev. 154 (2022) 111813.
    [28]
    F. Bian, Z. Zhang, Y. Yang, J. Energy Chem. 23 (2014) 383-390.
    [29]
    G. Zhou, L. Chen, Y. Chao, X. Li, G. Luo, W. Zhu, J. Energy Chem. 59 (2021) 431-445.
    [30]
    Y. Li, Z. Li, C. Chen, K. Yang, B. Cao, S. Xu, N. Yang, W. Zhao, H. Chen, M. Zhang, F. Pan, J. Energy Chem. 61 (2021) 368-385.
    [31]
    R. Trocoli, A. Battistel, F.L. Mantia, Chem. Eur. J. 20 (2014) 9888 - 9891.
    [32]
    W. Xu, L. He, Z. Zhao, Desalination 503 (2021) 114935.
    [33]
    S.R. Das, S.B. Majumder, R.S. Katiyar, J. Power Sources 139 (2005) 261-268.
    [34]
    Y.Z. Song, J. Song, Z. Lili, B. Dai, C. Wei, High Energy Chem. 54 (2020) 441-454.
    [35]
    M.-Y. Zhao, Z.-Y. Ji, Y.-G. Zhang, Z.-Y. Guo, Y.-Y. Zhao, J. Liu, J.-S. Yuan, Electrochim. Acta 252 (2017) 350-361.
    [36]
    F. Hippauf, T. Abendroth, J. Neidhardt, H. Althues, S.A. Aljlil, R.A. Alrasheed, Y.M. Alyousef, S. Kaskel, Energy Technol. 9 (2021) 2100145.
    [37]
    W. Sun, F. Cao, Y. Liu, X. Zhao, X. Liu, J. Yuan, J. Mater. Chem. 22 (2012) 20952.
    [38]
    P. Xu, J. Hong, X. Qian, Z. Xu, H. Xia, X. Tao, Z. Xu, Q.-Q. Ni, J. Mater. Sci. (2020).
    [39]
    A. Siekierka, B. Tomaszewska, M. Bryjaka, Desalination 436 (2018) 8-14.
    [40]
    A. Siekierka, Sep. Purif. Technol. 236 (2020) 116234.
    [41]
    X. Zhao, Y. Jiao, P. Xue, M. Feng, Y. Wang, Z. Sha, ACS Sustainable Chem. Eng. 8 (2020) 4827-4837.
    [42]
    Y. Wu, C. Cao, J. Zhang, L. Wang, X. Ma, X. Xu, ACS Appl. Mater. Interfaces 8 (2016) 19567-19572.
    [43]
    F. Luo, C. Wei, C. Zhang, H. Gao, J. Niu, W. Ma, Z. Peng, Y. Bai, Z. Zhang, J. Energy Chem. 44 (2020) 138-146.
    [44]
    Y. Xiao, X.D. Zhang, Y.F. Zhu, P.F. Wang, Y.X. Yin, X. Yang, J.L. Shi, J. Liu, H. Li, X.D. Guo, B.H. Zhong, Y.G. Guo, Adv. Sci. 6 (2019) 1801908.
    [45]
    C.P. Lawagon, G.M. Nisola, R.a.I. Cuevas, H. Kim, S.-P. Lee, W.-J. Chung, Chem. Eng. J. 348 (2018) 1000-1011.
    [46]
    C.P. Lawagon, G.M. Nisola, R.a.I. Cuevas, R.E.C. Torrejos, H. Kim, S.-P. Lee, W.-J. Chung, Sep. Purif. Technol. 212 (2019) 416-426.
    [47]
    M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J.I. Mizuki, R. Kanno, J. Am. Chem. Soc. 132 (2010) 15268-15276.
    [48]
    W. Xu, Y. Zheng, L. Lin, W. Lei, Z. Wang, H. Song, Y. Cheng, R. Qi, H. Peng, H. Lin, Z. Yang, R. Huang, J. Alloys Compd. 870 (2021) 159387.
    [49]
    J. Yin, F. Gao, Y. Wu, J. Wang, Q. Lu, CrystEngComm 12 (2010) 3401.
    [50]
    Y. Wang, T. Hu, Y. Chen, H. Yuan, Y. Qiao, Int. J. Hydrogen Energy 45 (2020) 22744-22751.
    [51]
    L. Cheng, Y. Men, J. Wang, H. Wang, W. An, Y. Wang, Z. Duan, J. Liu, Appl. Catal. B Environ. 204 (2017) 374-384.
    [52]
    X. Xiao, X. Liu, H. Zhao, D. Chen, F. Liu, J. Xiang, Z. Hu, Y. Li, Adv. Mater. 24 (2012) 5762-5766.
    [53]
    A. Karim, S. Fosse, K.A. Persson, Phys. Rev. B 87 (2013) 75322.
    [54]
    Y.Z. Song, L.C. Zhu, Z.Z. Zhang, J.J. Ding, Russ. J. Phys. Chem. A 91 (2017) 1987-1993.
    [55]
    J.S. Kim, K. Kim, W. Cho, W.H. Shin, R. Kanno, J.W. Choi, Nano Lett. 12 (2012) 6358-6365.
    [56]
    Z. Zhang, X. Du, Q. Wang, F. Gao, T. Jin, X. Hao, P. Ma, J. Li, G. Guan, Sep. Purif. Technol. 259 (2021) 118111.
    [57]
    Y. Du, Y. Xu, W. Zhou, Y. Yu, X. Ma, F. Liu, J. Xu, Y. Zhu, Green Energy Environ. 6 (2021) 703-714.
    [58]
    S. Kim, J. Lee, S. Kim, S. Kim, J. Yoon, Energy Technol. 6 (2018) 340-344.
    [59]
    L.J. Xi, H.-E. Wang, Z.G. Lu, S.L. Yang, R.G. Ma, J.Q. Deng, C.Y. Chung, J. Power Sources 198 (2012) 251-257.
    [60]
    J. Zhou, Y. Zhang, H. Chen, Z. Liu, Y. Yang, L. Yu, Mater. Lett. 236 (2019) 358-361.
    [61]
    Y. Li, Y. Zhou, C. Zhu, Y.H. Hu, S. Gao, Q. Liu, X. Cheng, L. Zhang, J. Yang, Y. Lin, Catal. Sci. Technol. 8 (2018) 5325-5333.
    [62]
    F. Xiao, X. Qin, M. Xu, S. Zhu, L. Zhang, Y. Hong, S.-I. Choi, Q. Chang, Y. Xu, X. Pan, M. Shao, ACS Catal. 9 (2019) 11189-11198.
    [63]
    J. Yin, G. Zhou, X. Gao, J. Chen, L. Zhang, J. Xu, P. Zhao, F. Gao, Nanomaterials-Basel 9 (2019) 1686.
    [64]
    P. Chen, H. Zhong, X. Wang, C. Shao, S. Zhi, X.-R. Li, C. Wei, Anal. Methods 11 (2019) 1469-1474.
    [65]
    J. Chen, L. Zhang, W. Bai, Y. Zhou, C. Li, T. Guo, P. Chen, J. Zhu, X. Wang, Y. Fu, Electrochim. Acta 337 (2020) 135824.
    [66]
    M. Nakayama, H. Taki, T. Nakamura, S. Tokuda, R. Jalem, T. Kasuga, J. Phys. Chem. C 118 (2014) 27245-27251.
    [67]
    C. Jiang, Z. Tang, S. Wang, Z. Zhang, J. Power Sources 357 (2017) 144-148.
    [68]
    M.-R. Huang, C.-W. Lin, H.-Y. Lu, Appl. Surf. Sci. 177 (2001) 103-113.
    [69]
    J. Yu, D. Fang, H. Zhang, Z.Y. Leong, J. Zhang, X. Li, H.Y. Yang, ACS Mater. Lett. 2 (2020) 1662-1668.
    [70]
    M. Pasta, A. Battistel, F.L. Mantia, Energy Environ. Sci. 5 (2012) 9487-9491.
    [71]
    D.-F. Liu, S.-Y. Sun, J.-G. Yu, Can. J. Chem. Eng. 97 (2019) 1589-1595.
    [72]
    H. Huang, C.A. Vincent, P.G. Bruce, J. Electrochem. Soc. 146 (1999) 3649-3654.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (173) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return