Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Haomin Jiang, Luting Zhang, Zhiwei Han, Yang Tang, Yanzhi Sun, Pingyu Wan, Yongmei Chen, Morris D. Argyle, Maohong Fan. Direct conversion of methane to methanol by electrochemical methods. Green Energy&Environment, 2022, 7(6): 1132-1142. doi: 10.1016/j.gee.2021.11.007
Citation: Haomin Jiang, Luting Zhang, Zhiwei Han, Yang Tang, Yanzhi Sun, Pingyu Wan, Yongmei Chen, Morris D. Argyle, Maohong Fan. Direct conversion of methane to methanol by electrochemical methods. Green Energy&Environment, 2022, 7(6): 1132-1142. doi: 10.1016/j.gee.2021.11.007

Direct conversion of methane to methanol by electrochemical methods

doi: 10.1016/j.gee.2021.11.007
  • A convenient method for methane (CH4) direct conversion to methanol (CH3OH) is of great significance to use methane-rich resources, especially clathrates and stranded shale gas resources located in remote regions. Theoretically, the activation of CH4 and the selectivity to the CH3OH product are challenging due to the extreme stability of CH4 and relatively high reactivity of CH3OH. The state-of-the-art ‘methane reforming - methanol synthesis’ process adopts a two-step strategy to avoid the further reaction of CH3OH under the harsh conditions required for CH4 activation. In the electrochemical field, researchers are trying to develop conversion pathways under mild conditions. They have found suitable catalysts to activate the C–H bonds in methane with the help of external charge and have designed the electrode reactions to continuously generate certain active oxygen species. These active oxygen species attack the activated methane and convert it to CH3OH, with the benefit of avoiding over-oxidation of CH3OH, and thus obtain a high conversion efficiency of CH4 to CH3OH. This mini-review focuses on the advantages and challenges of electrochemical conversion of CH4 to CH3OH, especially the strategies for supplying electro-generated active oxygen species in-situ to react with the activated methane.

     

  • loading
  • [1]
    H. Song, X. Meng, Z. Wang, H. Liu, J. Ye, Joule 3(2019) 1606-1636
    [2]
    M. Ravi, M. Ranocchiari, J.A. van Bokhoven, Angew. Chem. Int. Ed. 56(2017) 16464-16483
    [3]
    C.G. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A 107(2003) 4184-4195
    [4]
    R.D. Amos, Mol. Phys. 38(1979) 33-45
    [5]
    J. Berkowitz, J.P. Greene, H. Cho, B. Ruscic, J. Phys. Chem. 86(1987) 674-676
    [6]
    Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press), 2007, pp. 19-145
    [7]
    P. Tang, Q. Zhu, Z. Wu, D. Ma, Energy Environ. Sci. 7(2014) 2580-2591
    [8]
    S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, Int. J. Hydrogen Energy 39(2014) 1979-1997
    [9]
    F. Che, J.T. Gray, S. Ha, J.S. McEwen, ACS Catal. 7(2017) 551-562
    [10]
    D. Ligthart, R. van Santen, E. Hensen, J. Catal. 280(2011) 206-220
    [11]
    J. Jang, K. Shen, C.G. Morales-Guio, Joule 3(2019) 1-5
    [12]
    J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan, Y. Deng, Y. Zhang, S. Yao, G. Sankar, D. Ma, J. Tang, Nature Catal. 11(2018) 889-896
    [13]
    H. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako, J. Ye, J. Am. Chem. Soc. 141(2019) 20507-20515
    [14]
    X. Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, F. Yang, L. He, X. Chen, Q. Li, J. Xiao, D. Deng, X. Bao, Chem 4(2018) 1-9
    [15]
    Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang, C. Wang, X. Meng, H. Yang, C. Mesters, F. Xiao, Science 367(2020) 193-197
    [16]
    S. Yuan, Y. Li, J. Peng, Y.M. Questell-Santiago, K. Akkiraju, L. Giordano, D.J. Zheng, S. Bagi, Y. Román-Leshkov, Y. Shao-Horn, Adv. Energy Mater. 10(2020) 2002154
    [17]
    Y. Tian, L. Piao, X. Chen, Green Chem. 23(2021) 3526-3541
    [18]
    X. Meng, X. Cui, N. Rajan, L. Yu, D. Deng, X. Bao, Chem 5(2019) 2296-2325
    [19]
    X. Cui, R. Huang, D. Deng, EnergyChem 3(2020) 100050
    [20]
    S. Xie, S. Lin, Q. Zhang, Z. Tian, Y. Wang, J. Energy Chem. 27(2018) 1629-1636
    [21]
    L. Arnarson, P. Schmidt, M. Pandey, A. Bagger, K. Thygesen, I. Stephensc, J. Rossmeisl, Phys. Chem. Chem. Phys. 20(2018) 11152-11159
    [22]
    A. Prajapati, B.A. Collins, J.D. Goodpaster, M.R. Singh, Proc. Natl. Acad. Sci. 118(2021) e2023233118
    [23]
    A. Tomita, J. Nakajima, T. Hibino, Angew. Chem. Int. Ed. 47(2008) 1462-1464
    [24]
    B. Lee, Y. Sakamoto, D. Hirabayashi, K. Suzuki, T. Hibino, J. Catal. 271(2010) 195-200
    [25]
    C. Li, Y. Zhang, D. Li, B. Wang, C. Russell, M. Fan, R. Zhang, Green Energy Environ. https://doi.org/10.1016/j.gee.2021.06.001.
    [26]
    B. Lee, T. Hibino, J. Catal. 279(2011) 233-240
    [27]
    B. Shelimov, C. Naccache, M. Che, J. Catal. 37(1975) 279-286
    [28]
    P. Promoppatum, V. Viswanathan, ACS Sustainable Chem. Eng. 4(2016) 1736-1745
    [29]
    A. Torabi, J. Barton, C. Willman, H. Ghezel-Ayagh, N. Li, A. Poozhikunnath, R. Maric, O. Marina, ECS Trans. 72(2016) 193
    [30]
    R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science 280(1998) 560-564
    [31]
    T. Zimmermann, M. Soorholtz, M. Bilke, F. Schuth, J. Am. Chem. Soc. 138(2016) 12395-12400
    [32]
    R. Kim, Y. Surendranath, ACS Cent. Sci. 5(2019) 1179-1186
    [33]
    B. Wayland, S. Ba, A. Sherry, J. Am. Chem. Soc. 113(1991) 5305-5311
    [34]
    B. Natinsky, S. Lu, E. Copeland, J. Quintana, C. Liu, ACS Cent. Sci. 5(2019) 1584-1590
    [35]
    M. O’Reilly, R. Kim, S. Oh, Y. Surendranath, ACS Cent. Sci. 3(2017) 1174-1179
    [36]
    A. Antzara, E. Heracleous, L. Silvester, D.B. Bukur, A.A. Lemonidou, Catalysis Today 272 (2016) 32-41
    [37]
    S. Wang, T. Itoh, T. Fujimori, M. Castro, A. Silvestre-Albero, F. Rodriguez-Reinoso, T. Ohba, H. Kanoh, M. Endo, K. Kaneko, Langmuir 28(2012) 7564-7571
    [38]
    M. Jafarian, M. Mahjani, H. Heli, F. Gobal, M. Heydarpoor, Electrochem. Commun. 5(2003) 184-188
    [39]
    J. Qiao, H. Li, Y. Chang, S. Guan, S. Shuang, C. Dong, Anal. Lett. 41(2008) 593-598
    [40]
    N. Spinner, W. Mustain, J. Electrochem. Soc. 160(2013) F1275-F1281
    [41]
    J. Zhang, C. Oloman, J. Appl. Electrochem. 35(2005) 945-953
    [42]
    K. Fuku, K. Sayama, Chem. Commun. (2016) 5406-5409
    [43]
    H. Ahn, T. Marks, J. Am. Chem. Soc. 120(1998) 13533-13534
    [44]
    B. Samaranch, P. Piscina, G. Clet, M. Houalla, P. Gélin, N. Homs, Chem. Mater. 19(2007) 1445-1451
    [45]
    Z. Guo, W. Chen, Y. Song, X. Dong, G. Li, W. Wei, Y. Sun, Chinese J. Catal. 41(2020) 1067-1072
    [46]
    Y. Song, Y. Zhao, G. Nan, W. Chen, Z. Guo, S. Li, Z. Tang, W. Wei, Y. Sun, Appl. Catal. B-Environ. 270(2020) 118888
    [47]
    L. Chen, B. Yang, X. Zhang, W. Dong, K. Cao, X. Zhang, Energy & Fuels 20(2006) 915-918
    [48]
    R. Rocha, L. Camargo, M. Lanza, R. Bertazzoli, Electrocatal. 1(2010) 224-229
    [49]
    R. Rocha, R. Reis, M. Lanza, R. Bertazzoli, Electrochim. Acta 87(2013) 606-610
    [50]
    M. Sarno, E. Ponticorvo, N. Funicello, S. De Pasquale, Appl. Catal. A - Gen. 603(2020) 117746
    [51]
    M. Ma, B. Jin, P. Li, M. Jung, J. Kim, Y. Cho, S. Kim, J. Moon, J. Park, Adv. Sci. 4(2017) 1700379
    [52]
    C. Oh, J. Kim, Y. Hwang, M. Ma, J. Park, Appl. Catal. B - Environ. 283(2021) 119653
    [53]
    J. Lee, J. Yang, J. Moon, ACS Energy Lett. 6(2021) 893-899
    [54]
    M. Hayyan, M. Hashim, I.M. AlNashef, Chem. Rev. 116(2016) 3029-3085
    [55]
    H. Jiang, Y. Cheng, Z. Wang, Z. Bai, Y. Tang, Y. Sun, P. Wan, Y. Chen, J. Electrochem. Soc. 168(2021) 016504
    [56]
    L. Wang, S. Liu, H. Jiang, Y.Y. Chen, L.N. Wang, G. Duan, Y. Sun, Y. Chen, P. Wan, J. Electrochem. Soc. 165(2018) H705-H710
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2785) PDF downloads(40) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return