Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Ruichang Xue, Mengwei Guo, Zhuoming Wei, Qibo Zhang. Deep eutectic solvent-induced synthesis of Ni-Fe catalyst with excellent mass activity and stability for water oxidation. Green Energy&Environment, 2023, 8(3): 852-863. doi: 10.1016/j.gee.2021.11.006
Citation: Ruichang Xue, Mengwei Guo, Zhuoming Wei, Qibo Zhang. Deep eutectic solvent-induced synthesis of Ni-Fe catalyst with excellent mass activity and stability for water oxidation. Green Energy&Environment, 2023, 8(3): 852-863. doi: 10.1016/j.gee.2021.11.006

Deep eutectic solvent-induced synthesis of Ni-Fe catalyst with excellent mass activity and stability for water oxidation

doi: 10.1016/j.gee.2021.11.006
  • Ni-Fe bimetallic electrodes are currently recognized as a kind of benchmark transition metal-based oxygen evolution reaction (OER) electrocatalysts. Facile synthesis of Ni-Fe bimetallic electrode materials with excellent catalytic activity and satisfied stability by a simple and low-cost route is still a big challenge. Herein, well-defined Ni-Fe nanoparticles in-situ developed on a planar Fe substrate (Ni-Fe NPs/Fe) is fabricated via a facile one-step galvanic replacement reaction (GRR) carried out in an Ethaline-based deep eutectic solvent (DES). The prepared Ni-Fe NPs/Fe exhibits outstanding OER performance, which needs an overpotential of only 319 mV to drive a current density of 10 mA cm-2, with a small Tafel slope of 41.2 mV dec-1 in 1.0 mol L-1 KOH, high mass activity (up to 319.78 A g-1 at an overpotential of 300 mV) and robust durability for 200 h. Impressively, the Ni-Fe bimetallic oxygen-evolution electrode obtained from the Ethaline-based DES is catalytically more active and durable than that of its counterpart derived from the 4.2 mol L-1 NaCl aqueous solution. The reason for this is mainly related to the different morphology and surface state of the Ni-Fe catalysts obtained from these different solvent environments, particularly for the differences in phy-chemical properties, active species formed and deposition kinetics, offered by the Ethaline-based DES.

     

  • loading
  • [1]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Noerskov, T.F. Jaramillo, Science 355 (2017) eaad4998.
    [2]
    X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148-5180.
    [3]
    N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Chem. Soc. Rev. 46 (2017) 337-365.
    [4]
    L. Han, S. Dong, E. Wang, Adv. Mater. 28 (2016) 9266-9291.
    [5]
    F. Song, X. Hu, Nat. Commun. 5 (2014) 4477.
    [6]
    H. Xu, Z.X. Shi, Y.X. Tong, G.R. Li, Adv. Mater. 30 (2018) e1705442.
    [7]
    S.H. Ye, Z.X. Shi, J.X. Feng, Y.X. Tong, G.R. Li, Angew. Chem. Int. Ed. Engl. 57 (2018) 2672-2676.
    [8]
    J.W. Zhao, C.F. Li, Z.X. Shi, J.L. Guan, G.R. Li, Research 2020 (2020) 6961578.
    [9]
    H. Chen, Q. Zhao, L. Gao, J. Ran, Y. Hou, ACS Sustain. Chem. Eng. 7 (2019) 4247-4254.
    [10]
    D. Li, G. Hao, W. Guo, G. Liu, J. Li, Q. Zhao, J. Power Sources 448 (2020) 227434.
    [11]
    W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, T. Sasaki, ACS Nano 9 (2015) 1977-1984.
    [12]
    X. Meng, J. Han, L. Lu, G. Qiu, Z.L. Wang, C. Sun, Small 15 (2019) e1902551.
    [13]
    L. Gao, X. Cui, Z. Wang, C.D. Sewell, Z. Li, S. Liang, M. Zhang, J. Li, Y. Hu, Z. Lin, PNAS 118 (2021) e2023421118.
    [14]
    M.W. Louie, A.T. Bell, J. Am. Chem. Soc. 135 (2013) 12329-12337.
    [15]
    H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, Y. Cui, Nat. Commun. 6 (2015) 7261.
    [16]
    W.D. Chemelewski, J.R. Rosenstock, C.B. Mullins, J. Mater. Chem. A 2 (2014) 14957-14962.
    [17]
    J. Chen, F. Zheng, S.-J. Zhang, A. Fisher, Y. Zhou, Z. Wang, Y. Li, B.-B. Xu, J.-T. Li, S.-G. Sun, ACS Catal. 8 (2018) 11342-11351.
    [18]
    T. Tian, M. Zheng, J. Lin, X. Meng, Y. Ding, Chem. Commun. (Camb.) 55 (2019) 1044-1047.
    [19]
    M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 135 (2013) 8452-8455.
    [20]
    X. Yu, M. Zhang, W. Yuan, G. Shi, J. Mater. Chem. A 3 (2015) 6921-6928.
    [21]
    Y. Zhai, C. Li, G. Xu, Y. Ma, X. Liu, Y. Zhang, Green Chem. 19 (2017) 1895-1903.
    [22]
    C.F. Li, J.W. Zhao, L.J. Xie, J.Q. Wu, Q. Ren, Y. Wang, G.R. Li, Angew. Chem. Int. Ed. Engl. 60 (2021) 18129-18137.
    [23]
    C.G. Morales-Guio, L.A. Stern, X. Hu, Chem. Soc. Rev. 43 (2014) 6555-6569.
    [24]
    R.D. Smith, M.S. Prevot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel, C.P. Berlinguette, Science 340 (2013) 60-63.
    [25]
    Y. Liu, X. Liang, L. Gu, Y. Zhang, G.D. Li, X. Zou, J.S. Chen, Nat. Commun. 9 (2018) 2609.
    [26]
    X. Yang, C.-J. Wang, C.-C. Hou, W.-F. Fu, Y. Chen, ACS Sustain. Chem. Eng. 6 (2018) 2893-2897.
    [27]
    S. Hao, L. Chen, C. Yu, B. Yang, Z. Li, Y. Hou, L. Lei, X. Zhang, ACS Energy Lett. 4 (2019) 952-959.
    [28]
    V.R. Jothi, K. Karuppasamy, T. Maiyalagan, H. Rajan, C.Y. Jung, S.C. Yi, Adv. Energy Mater. 10 (2020) 1904020.
    [29]
    E. Hatami, A. Toghraei, G. Barati Darband, J. Hydrigen Energ. 46 (2021) 9394-9405.
    [30]
    X. Lu, C. Zhao, Nat. Commun. 6 (2015) 6616.
    [31]
    R. Chen, S.F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H.B. Yang, L. Zhang, L. Zhang, Q. Xiong, Adv. Mater. 31 (2019) 1903909.
    [32]
    L. Yu, J.F. Yang, B.Y. Guan, Y. Lu, X.W.D. Lou, Angew. Chem. Int. Ed. 57 (2018) 172-176.
    [33]
    P. Liu, B. Chen, C. Liang, W. Yao, Y. Cui, S. Hu, P. Zou, H. Zhang, H.J. Fan, C. Yang, Adv. Mater. 33 (2021) e2007377.
    [34]
    Y. Qiu, L. Xin, W. Li, Langmuir 30 (2014) 7893-7901.
    [35]
    S.-W. Park, I. Kim, S.-I. Oh, J.-C. Kim, D.-W. Kim, J. Catal. 366 (2018) 266-274.
    [36]
    Y. Wang, J. Yu, Y. Wang, Z. Chen, L. Dong, R. Cai, M. Hong, X. Long, S. Yang, RSC Adv. 10 (2020) 23321-23330.
    [37]
    H. Lei, X. Li, C. Sun, J. Zeng, S.S. Siwal, Q. Zhang, Small 15 (2019) e1804722.
    [38]
    S.W. Chee, S.F. Tan, Z. Baraissov, M. Bosman, U. Mirsaidov, Nat. Commun. 8 (2017) 1-8.
    [39]
    L. Chen, J. Zeng, M. Guo, R. Xue, R. Deng, Q. Zhang, J. Colloid Interface Sci. 583 (2021) 594-604.
    [40]
    C. Yang, Q.B. Zhang, A.P. Abbott, Electrichem. Commun. 70 (2016) 60-64.
    [41]
    J. Wang, L. Ji, S. Zuo, Z. Chen, Adv. Energy Mater. 7 (2017) 1700107.
    [42]
    C. D'agostino, R.C. Harris, A.P. Abbott, L.F. Gladden, M.D. Mantle, Phys. Chem. Chem. Phys. 13 (2011) 21383-21391.
    [43]
    F. Goncalves, J. Kestin, Ber. Bunsenges. Phys. Chem. 81 (1977) 1156-1161.
    [44]
    Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jerome, Chem. Soc. Rev. 41 (2012) 7108-7146.
    [45]
    Y. Tang, Q. Liu, L. Dong, H.B. Wu, X.-Y. Yu, Appl. Catal. B-Environ. 266 (2020) 118627.
    [46]
    C. Wang, H. Yang, Y. Zhang, Q. Wang, Angew. Chem. Int. Ed. 131 (2019) 6160-6164.
    [47]
    N. Todoroki, T. Wadayama, ACS Appl. Mater. Inter. 11 (2019) 44161-44169.
    [48]
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Science 257 (2011) 2717-2730.
    [49]
    H. Ali-Loytty, M.W. Louie, M.R. Singh, L. Li, H.G. Sanchez Casalongue, H. Ogasawara, E.J. Crumlin, Z. Liu, A.T. Bell, A. Nilsson, D. Friebel, J. Phys. Chem. C 120 (2016) 2247-2253.
    [50]
    D. Lim, E. Oh, C. Lim, S.E. Shim, S.-H. Baeck, Catal. Today 352 (2020) 27-33.
    [51]
    A.E. Praveen, S. Ganguli, V. Mahalingam, Nanoscale Adv. 2 (2020) 1927-1938.
    [52]
    L. Xu, L. Cao, W. Xu, Z. Pei, Appl. Surf. Science 503 (2020) 144122.
    [53]
    Y. Li, C. Zhao, Chem. Mater. 28 (2016) 5659-5666.
    [54]
    G. Hai, X. Jia, K. Zhang, X. Liu, Z. Wu, G. Wang, Nano Energy 44 (2018) 345-352.
    [55]
    X. Ling, F. Du, Y. Zhang, Y. Shen, T. Li, A. Alsaedi, T. Hayat, Y. Zhou, Z. Zou, RSC Adv. 9 (2019) 33558-33562.
    [56]
    C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H.J. Fan, C. Yang, Energy Environ. Sci. 13 (2020) 86-95.
    [57]
    K.N. Patel, M.P. Deshpande, V.P. Gujarati, S. Pandya, V. Sathe, S.H. Chaki, Materials Research Bulletin 106 (2018) 187-196.
    [58]
    C. Kuai, Y. Zhang, D. Wu, D. Sokaras, L. Mu, S. Spence, D. Nordlund, F. Lin, X.-W. Du, ACS Catal. 9 (2019) 6027-6032.
    [59]
    Z. Zhang, A. Kitada, K. Fukami, Z. Yao, K. Murase, Electrochim. Acta 348 (2020) 136289.
    [60]
    U. Mansfeld, M.D. Hager, R. Hoogenboom, C. Ott, A. Winter, U.S. Schubert, Chem. Commun. (Camb.) (2009) 3386-3388.
    [61]
    W. Yao, F.-L. Li, H.-X. Li, J.-P. Lang, J. Mater. Chem. A 3 (2015) 4578-4585.
    [62]
    Y. Zhou, Z. Wang, Z. Pan, L. Liu, J. Xi, X. Luo, Y. Shen, Adv. Mater. 31 (2019) e1806769.
    [63]
    X. Liu, R. Guo, K. Ni, F. Xia, C. Niu, B. Wen, J. Meng, P. Wu, J. Wu, X. Wu, L. Mai, Adv. Mater. 32 (2020) e2001136.
    [64]
    X. Liu, J. Meng, J. Zhu, M. Huang, B. Wen, R. Guo, L. Mai, Adv. Mater. (2021) e2007344.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (88) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return