Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Yaqi Cao, Wenchao Peng, Yang Li, Fengbao Zhang, Yuanzhi Zhu, Xiaobin Fan. Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion. Green Energy&Environment, 2023, 8(2): 360-382. doi: 10.1016/j.gee.2021.11.005
Citation: Yaqi Cao, Wenchao Peng, Yang Li, Fengbao Zhang, Yuanzhi Zhu, Xiaobin Fan. Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion. Green Energy&Environment, 2023, 8(2): 360-382. doi: 10.1016/j.gee.2021.11.005

Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion

doi: 10.1016/j.gee.2021.11.005
  • Atomically dispersed metal sites (ADMSs) play key roles in electrochemical energy conversion. The covalent organic frameworks (COFs) enable the precise control of the chemical compositions and structures at the molecular level, making them ideal substrates for supporting ADMSs. In this review, we systematically summarize the recent progress on the design and synthesis of ADMSs in COFs, including embedding molecular catalysts into COFs, immobilizing ADMSs on heteroatom-containing COFs, and preparing COF-derived carbon materials through pyrolysis. The electrocatalytic performance of the resulting catalysts is presented for various electrochemical reactions, involving oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and nitrogen reduction reaction (NRR). The modulation strategies of AMDSs in COFs for enhanced activity, selectivity, and stability are highlighted, together with a perspective of the current challenges and the future opportunities in this field.

     

  • loading
  • [1]
    Y. Peng, S. Chen, Green Energy Environ. 3 (2018) 335-351.
    [2]
    Y. Zhu, J. Sokolowski, X. Song, Y. He, Y. Mei, G. Wu, Adv. Energy Mater. 10 (2019) 1902844.
    [3]
    H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Adv. Mater. 32 (2020) 2002435.
    [4]
    C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem. Int. Ed. 56 (2017) 13944-13960.
    [5]
    Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Joule 2 (2018) 1242-1264.
    [6]
    J. Kim, H. E. Kim, H. Lee, ChemSusChem 11 (2018) 104-113.
    [7]
    Y. Peng, B. Lu, S. Chen, Adv. Mater. 30 (2018) 1801995.
    [8]
    Y. Wang, H. Su, Y. He, L. Li, S. Zhu, H. Shen, P. Xie, X. Fu, G. Zhou, C. Feng, D. Zhao, F. Xiao, X. Zhu, Y. Zeng, M. Shao, S. Chen, G. Wu, J. Zeng, C. Wang, Chem. Rev. 120 (2020) 12217-12314.
    [9]
    Y. Zhu, X. Yang, C. Peng, C. Priest, Y. Mei, G. Wu, Small 17 (2021) 2005148.
    [10]
    A. Wagner, C. D. Sahm, E. Reisner, Nat. Catal. 3 (2020) 775-786.
    [11]
    Q. Zhang, J. Guan, J. Power Sources 471 (2020) 228446.
    [12]
    H. Xu, D. Wang, P. Yang, A. Liu, R. Li, Y. Li, L. Xiao, X. Ren, J. Zhang, M. An, J. Mater. Chem. A 8 (2020) 23187-23201.
    [13]
    Q. Zhang, J. Guan, Adv. Funct. Mater. 30 (2020) 2000768.
    [14]
    C. Y. Lin, D. Zhang, Z. Zhao, Z. Xia, Adv. Mater. 30 (2018) 1703646.
    [15]
    Y. Yusran, Q. Fang, V. Valtchev, Adv. Mater. 32 (2020) 2002038.
    [16]
    J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 49 (2020) 3565-3604.
    [17]
    X. Cui, S. Lei, A. C. Wang, L. Gao, Q. Zhang, Y. Yang, Z. Lin, Nano Energy 70 (2020) 104525.
    [18]
    K. Zhang, K. O. Kirlikovali, R. S. Varma, Z. Jin, H. W. Jang, O. K. Farha, M. Shokouhimehr, ACS Appl. Mater. Interfaces 12 (2020) 27821-27852.
    [19]
    M. Yu, R. Dong, X. Feng, J. Am. Chem. Soc. 142 (2020) 12903-12915.
    [20]
    L. Dai, K. Huang, Y. Xia, Z. Xu, Green Energy Environ. 6 (2021) 193-211.
    [21]
    R. Liu, K. T. Tan, Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yang, D. Jiang, Chem. Soc. Rev. 50 (2021) 120-242.
    [22]
    K. Kamiya, Chem. Sci. 11 (2020) 8339-8349.
    [23]
    M. Babucci, A. Guntida, B. C. Gates, Chem. Rev. 120 (2020) 11956-11985.
    [24]
    Y. Zhu, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, Small Methods 3 (2019) 1800438.
    [25]
    H. Fei, J. Dong, D. Chen, T. Hu, X. Duan, I. Shakir, Y. Huang, X. Duan, Chem. Soc. Rev. 48 (2019) 5207-5241.
    [26]
    Q. Zhang, X. Zhang, J. Wang, C. Wang, Nanotechnology 32 (2021) 032001.
    [27]
    M. Zhao, J. Feng, W. Yang, S. Song, H. Zhang, ChemCatChem 13 (2020) 1250-1270.
    [28]
    Z. Liang, C. Qu, D. Xia, R. Zou, Q. Xu, Angew. Chem. Int. Ed. 57 (2018) 9604-9633.
    [29]
    A. Han, B. Wang, A. Kumar, Y. Qin, J. Jin, X. Wang, C. Yang, B. Dong, Y. Jia, J. Liu, X. Sun, Small Methods 3 (2019) 1800471.
    [30]
    Z. Song, L. Zhang, K. Doyle-Davis, X. Fu, J. L. Luo, X. Sun, Adv. Energy Mater. 10 (2020) 2001561.
    [31]
    D.-D. Ma, Q.-L. Zhu, Coordin. Chem. Rev. 422 (2020) 213483.
    [32]
    S. Chen, M. Cui, Z. Yin, J. Xiong, L. Mi, Y. Li, ChemSusChem 14 (2021) 73-93.
    [33]
    A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 310 (2005) 1166-1170.
    [34]
    X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 41 (2012) 6010-6022.
    [35]
    S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang, Y. Li, Chem. Rev. 120 (2020) 11900-11955.
    [36]
    S. Wei, A. Li, J. C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W. C. Cheong, Y. Wang, L. Zheng, H. Xiao, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, Y. Li, Nat. Nanotechnol. 13 (2018) 856-861.
    [37]
    Z. Sun, Q. Liu, T. Yao, W. Yan, S. Wei, Sci. China Mater. 58 (2015) 313-341.
    [38]
    Q. Jia, E. Liu, L. Jiao, S. Pann, S. Mukerjee, Adv. Mater. 31 (2019) 1805157.
    [39]
    Y. Wang, D. Wang, Y. Li, Adv. Mater. 33 (2021) 2008151.
    [40]
    S. Lin, C. S. Diercks, Y. B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 349 (2015) 1208-1213.
    [41]
    C. Liu, H. Li, F. Liu, J. Chen, Z. Yu, Z. Yuan, C. Wang, H. Zheng, G. Henkelman, L. Wei, Y. Chen, J. Am. Chem. Soc. 142 (2020) 21861-21871.
    [42]
    S. Feng, W. Zheng, J. Zhu, Z. Li, B. Yang, Z. Wen, J. Lu, L. Lei, S. Wang, Y. Hou, Appl. Catal. B Environ. 270 (2020) 118908.
    [43]
    B.-Q. Li, S.-Y. Zhang, B. Wang, Z.-J. Xia, C. Tang, Q. Zhang, Energy Environ. Sci. 11 (2018) 1723-1729.
    [44]
    A. Wang, L. Cheng, W. Zhao, X. Shen, W. Zhu, J. Colloid Interface Sci. 579 (2020) 598-606.
    [45]
    S. Yuan, L. Cui, X. He, W. Zhang, T. Asefa, Int. J. Hydrogen Energy 45 (2020) 28860-28869.
    [46]
    E. M. Johnson, R. Haiges, S. C. Marinescu, ACS Appl. Mater. Interfaces 10 (2018) 37919-37927.
    [47]
    P. Peng, L. Shi, F. Huo, S. Zhang, C. Mi, Y. Cheng, Z. Xiang, ACS Nano 13 (2019) 878-884.
    [48]
    N. Huang, K. H. Lee, Y. Yue, X. Xu, S. Irle, Q. Jiang, D. Jiang, Angew. Chem. Int. Ed. 59 (2020) 16587-16593.
    [49]
    M. Lu, M. Zhang, C. G. Liu, J. Liu, L. J. Shang, M. Wang, J. N. Chang, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 60 (2021) 4864-4871.
    [50]
    B. Han, X. Ding, B. Yu, H. Wu, W. Zhou, W. Liu, C. Wei, B. Chen, D. Qi, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, J. Am. Chem. Soc. 143 (2021) 7104-7113.
    [51]
    P. Su, K. Iwase, T. Harada, K. Kamiya, S. Nakanishi, Chem. Sci. 9 (2018) 3941-3947.
    [52]
    K. Kamiya, R. Kamai, K. Hashimoto, S. Nakanishi, Nat. Commun. 5 (2014) 5040.
    [53]
    R. Kamai, K. Kamiya, K. Hashimoto, S. Nakanishi, Angew. Chem. Int. Ed. 55 (2016) 13184-13188.
    [54]
    R. Kamai, S. Nakanishi, K. Hashimoto, K. Kamiya, J. Electroanal. Chem. 800 (2017) 54-59.
    [55]
    K. Iwase, T. Yoshioka, S. Nakanishi, K. Hashimoto, K. Kamiya, Angew. Chem. Int. Ed. 54 (2015) 11068-11072.
    [56]
    K. Kamiya, T. Tatebe, S. Yamamura, K. Iwase, T. Harada, S. Nakanishi, ACS Catal. 8 (2018) 2693-2698.
    [57]
    Y. Zhu, X. Chen, J. Liu, J. Zhang, D. Xu, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, ChemSusChem 11 (2018) 2402-2409.
    [58]
    T. Li, C. Atish, K. Silambarasan, X. Liu, A. P. O'Mullane, Electrochim. Acta 362 (2020) 137212.
    [59]
    X. Wang, Z. Fu, L. Zheng, C. Zhao, X. Wang, S. Y. Chong, F. McBride, R. Raval, M. Bilton, L. Liu, X. Wu, L. Chen, R. S. Sprick, A. I. Cooper, Chem. Mater. 32 (2020) 9107-9114.
    [60]
    W. Zhang, P. Jiang, Y. Wang, J. Zhang, Y. Gao, P. Zhang, RSC Adv. 4 (2014) 51544-51547.
    [61]
    H. B. Aiyappa, J. Thote, D. B. Shinde, R. Banerjee, S. Kurungot, Chem. Mater. 28 (2016) 4375-4379.
    [62]
    L. Ma, W. Hu, B. Mei, H. Liu, B. Yuan, J. Zang, T. Chen, L. Zou, Z. Zou, B. Yang, Y. Yu, J. Ma, Z. Jiang, K. Wen, H. Yang, ACS Catal. 10 (2020) 4534-4542.
    [63]
    X. Zhao, P. Pachfule, S. Li, T. Langenhahn, M. Ye, C. Schlesiger, S. Praetz, J. Schmidt, A. Thomas, J. Am. Chem. Soc. 141 (2019) 6623-6630.
    [64]
    Z. Gao, Z. Yu, Y. Huang, X. He, X. Su, L. Xiao, Y. Yu, X. Huang, F. Luo, J. Mater. Chem. A 8 (2020) 5907-5912.
    [65]
    X. Feng, Z. Gao, L. Xiao, Z. Lai, F. Luo, Inorg. Chem. Front. 7 (2020) 3925-3931.
    [66]
    Z. Gao, L. L. Gong, X. Q. He, X. M. Su, L. H. Xiao, F. Luo, Inorg. Chem. 59 (2020) 4995-5003.
    [67]
    T. Yoshioka, K. Iwase, S. Nakanishi, K. Hashimoto, K. Kamiya, J. Phys. Chem. C 120 (2016) 15729-15734.
    [68]
    K. Kamiya, R. Sugimoto, T. Tatebe, T. Harada, S. Nakanishi, ChemSusChem 13 (2020) 3462-3468.
    [69]
    K. Iwase, K. Kamiya, M. Miyayama, K. Hashimoto, S. Nakanishi, ChemElectroChem 5 (2018) 805-810.
    [70]
    Y. Wu, K. Kamiya, T. Hashimoto, R. Sugimoto, T. Harada, K. Fujii, S. Nakanishi, Electrochemistry 88 (2020) 359-364.
    [71]
    S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J. Am. Chem. Soc. 133 (2011) 19816-19822.
    [72]
    P. Dong, Y. Wang, A. Zhang, T. Cheng, X. Xi, J. Zhang, ACS Catal. 11 (2021) 13266-13279.
    [73]
    W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, J. Am. Chem. Soc. 141 (2019) 7615-7621.
    [74]
    A. V. Bavykina, M. G. Goesten, F. Kapteijn, M. Makkee, J. Gascon, ChemSusChem 8 (2015) 809-812.
    [75]
    A. V. Bavykina, E. Rozhko, M. G. Goesten, T. Wezendonk, B. Seoane, F. Kapteijn, M. Makkee, J. Gascon, ChemCatChem 8 (2016) 2217-2221.
    [76]
    E. Rozhko, A. Bavykina, D. Osadchii, M. Makkee, J. Gascon, J. Catal. 345 (2017) 270-280.
    [77]
    D. A. Popov, J. M. Luna, N. M. Orchanian, R. Haiges, C. A. Downes, S. C. Marinescu, Dalton Trans. 47 (2018) 17450-17460.
    [78]
    P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47 (2008) 3450-3453.
    [79]
    J.-D. Yi, R. Xu, Q. Wu, T. Zhang, K.-T. Zang, J. Luo, Y.-L. Liang, Y.-B. Huang, R. Cao, ACS Energy Lett. 3 (2018) 883-889.
    [80]
    J.-D. Yi, R. Xu, G.-L. Chai, T. Zhang, K. Zang, B. Nan, H. Lin, Y.-L. Liang, J. Lv, J. Luo, R. Si, Y.-B. Huang, R. Cao, J. Mater. Chem. A 7 (2019) 1252-1259.
    [81]
    Y. Hou, Y.-B. Huang, Y.-L. Liang, G.-L. Chai, J.-D. Yi, T. Zhang, K.-T. Zang, J. Luo, R. Xu, H. Lin, S.-Y. Zhang, H.-M. Wang, R. Cao, CCS Chem. 1 (2019) 384-395.
    [82]
    C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia, M. Chen, Y. Hou, M. Qiu, C. Yuan, Y. Su, F. Zhang, H. Liang, X. Zhuang, Adv. Funct. Mater. 29 (2019) 1806884.
    [83]
    S. Yuan, J. L. Shui, L. Grabstanowicz, C. Chen, S. Commet, B. Reprogle, T. Xu, L. Yu, D. J. Liu, Angew. Chem. Int. Ed. 52 (2013) 8349-8353.
    [84]
    Z. Xiang, Y. Xue, D. Cao, L. Huang, J. F. Chen, L. Dai, Angew. Chem. Int. Ed. 53 (2014) 2433-2437.
    [85]
    Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu, P. Feng, Adv. Mater. 27 (2015) 3431-3436.
    [86]
    S. Wei, Y. Wang, W. Chen, Z. Li, W. C. Cheong, Q. Zhang, Y. Gong, L. Gu, C. Chen, D. Wang, Q. Peng, Y. Li, Chem. Sci. 11 (2019) 786-790.
    [87]
    J. Yang, W. Li, D. Wang, Y. Li, Small Struct. 2 (2020) 2000051.
    [88]
    P. L. Cheung, S. K. Lee, C. P. Kubiak, Chem. Mater. 31 (2019) 1908-1919.
    [89]
    P. T. Smith, B. P. Benke, Z. Cao, Y. Kim, E. M. Nichols, K. Kim, C. J. Chang, Angew. Chem. Int. Ed. 57 (2018) 9684-9688.
    [90]
    C. S. Diercks, S. Lin, N. Kornienko, E. A. Kapustin, E. M. Nichols, C. Zhu, Y. Zhao, C. J. Chang, O. M. Yaghi, J. Am. Chem. Soc. 140 (2018) 1116-1122.
    [91]
    H. J. Zhu, M. Lu, Y. R. Wang, S. J. Yao, M. Zhang, Y. H. Kan, J. Liu, Y. Chen, S. L. Li, Y. Q. Lan, Nat. Commun. 11 (2020) 497.
    [92]
    C. Wang, Y.-N. Zhao, C.-Y. Zhu, M. Zhang, Y. Geng, Y.-G. Li, Z.-M. Su, J. Mater. Chem. A 8 (2020) 23599-23606.
    [93]
    J. Wang, J. Wang, S. Qi, M. Zhao, J. Phys. Chem. C 124 (2020) 17675-17683.
    [94]
    K. Iwase, S. Nakanishi, M. Miyayama, K. Kamiya, ACS Appl. Energy Mater. 3 (2020) 1644-1652.
    [95]
    Q. Wu, R.-K. Xie, M.-J. Mao, G.-L. Chai, J.-D. Yi, S.-S. Zhao, Y.-B. Huang, R. Cao, ACS Energy Lett. 5 (2020) 1005-1012.
    [96]
    H. Huang, F. Li, Y. Zhang, Y. Chen, J. Mater. Chem. A 7 (2019) 5575-5582.
    [97]
    H. Tao, C. Lian, H. Liu, Green Energy Environ. 5 (2020) 303-321.
    [98]
    Y. Cao, Y. Zhu, X. Chen, B. S. Abraha, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, Catal. Sci. Technol. 9 (2019) 6606-6612.
    [99]
    Y. Cao, J. Zhang, L. Wang, M. Cen, W. Peng, Y. Li, F. Zhang, J. Tan, X. Fan, ACS Appl. Nano Mater. 4 (2021) 4948-4955.
    [100]
    H. Jin, Q. Gu, B. Chen, C. Tang, Y. Zheng, H. Zhang, M. Jaroniec, S.-Z. Qiao, Chem 6 (2020) 2382-2394.
    [101]
    D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 29 (2017) 1606459.
    [102]
    H.-F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 28 (2018) 1803329.
    [103]
    X. F. Lu, B. Y. Xia, S. Q. Zang, X. W. D. Lou, Angew. Chem. Int. Ed. 59 (2020) 4634-4650.
    [104]
    Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, Adv. Energy Mater. 8 (2018) 1801909.
    [105]
    C. Wan, X. Duan, Y. Huang, Adv. Energy Mater. 10 (2020) 1903815.
    [106]
    S. Li, S.-H. Ho, T. Hua, Q. Zhou, F. Li, J. Tang, Green Energy Environ. 6 (2021) 644-659.
    [107]
    L. Li, C. Tang, Y. Zheng, B. Xia, X. Zhou, H. Xu, S. Z. Qiao, Adv. Energy Mater. 10 (2020) 2000789.
    [108]
    C. Tang, Y. Jiao, B. Shi, J. N. Liu, Z. Xie, X. Chen, Q. Zhang, S. Z. Qiao, Angew. Chem. Int. Ed. 59 (2020) 9171-9176.
    [109]
    M. Dong, X. Liu, L. Jiang, Z. Zhu, Y. Shu, S. Chen, Y. Dou, P. Liu, H. Yin, H. Zhao, Green Energy Environ. 5 (2020) 499-505.
    [110]
    H. Xu, D. Cheng, D. Cao, X. C. Zeng, Nat. Catal. 1 (2018) 339-348.
    [111]
    J. Gao, H. b. Yang, X. Huang, S.-F. Hung, W. Cai, C. Jia, S. Miao, H. M. Chen, X. Yang, Y. Huang, T. Zhang, B. Liu, Chem 6 (2020) 658-674.
    [112]
    J. M. Campos-Martin, G. Blanco-Brieva, J. L. Fierro, Angew. Chem. Int. Ed. 45 (2006) 6962-6984.
    [113]
    S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. Stephens, J. Rossmeisl, Nat. Mater. 12 (2013) 1137-1143.
    [114]
    Z.-L. Wang, C. Li, Y. Yamauchi, Nano Today 11 (2016) 373-391.
    [115]
    C. Chen, J. F. Khosrowabadi Kotyk, S. W. Sheehan, Chem 4 (2018) 2571-2586.
    [116]
    Y. Y. Birdja, E. Perez-Gallent, M. C. Figueiredo, A. J. Gottle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 4 (2019) 732-745.
    [117]
    T. Zheng, K. Jiang, H. Wang, Adv. Mater. 30 (2018) 1802066.
    [118]
    A. Liu, M. Gao, X. Ren, F. Meng, Y. Yang, L. Gao, Q. Yang, T. Ma, J. Mater. Chem. A 8 (2020) 3541-3562.
    [119]
    X. Zhi, A. Vasileff, Y. Zheng, Y. Jiao, S.-Z. Qiao, Energy Environ. Sci. 14 (2021) 3912-3930.
    [120]
    X. Zhou, J. Dong, Y. Zhu, L. Liu, Y. Jiao, H. Li, Y. Han, K. Davey, Q. Xu, Y. Zheng, S. Z. Qiao, J. Am. Chem. Soc. 143 (2021) 6681-6690.
    [121]
    C. Hu, L. Zhang, J. Gong, Energy Environ. Sci. 12 (2019) 2620-2645.
    [122]
    C. Wei, R. R. Rao, J. Peng, B. Huang, I. E. L. Stephens, M. Risch, Z. J. Xu, Y. Shao-Horn, Adv. Mater. 31 (2019) 1806296.
    [123]
    Y. Yan, B. Y. Xia, B. Zhao, X. Wang, J. Mater. Chem. A 4 (2016) 17587-17603.
    [124]
    J. Hou, Y. Wu, B. Zhang, S. Cao, Z. Li, L. Sun, Adv. Funct. Mater. 29 (2019) 1808367.
    [125]
    L. Li, P. Wang, Q. Shao, X. Huang, Chem. Soc. Rev. 49 (2020) 3072-3106.
    [126]
    S. Zhang, X. Zhang, Y. Rui, R. Wang, X. Li, Green Energy Environ. 6 (2021) 458-478.
    [127]
    J.-T. Ren, Y. Yao, Z.-Y. Yuan, Green Energy Environ. 6 (2021) 620-643.
    [128]
    H. Jiang, S. Zhao, W. Li, T. P. Neville, I. Akpinar, P. R. Shearing, D. J. L. Brett, G. He, Green Energy Environ. 5 (2020) 506-512.
    [129]
    H. Zhang, J. Wang, Q. Cheng, P. Saha, H. Jiang, Green Energy Environ. 5 (2020) 492-498.
    [130]
    J. Shan, C. Ye, S. Chen, T. Sun, Y. Jiao, L. Liu, C. Zhu, L. Song, Y. Han, M. Jaroniec, Y. Zhu, Y. Zheng, S. Z. Qiao, J. Am. Chem. Soc. 143 (2021) 5201-5211.
    [131]
    K.-H. Liu, H.-X. Zhong, S.-J. Li, Y.-X. Duan, M.-M. Shi, X.-B. Zhang, J.-M. Yan, Q. Jiang, Prog. Mater. Sci. 92 (2018) 64-111.
    [132]
    J. Deng, J. A. Iniguez, C. Liu, Joule 2 (2018) 846-856.
    [133]
    X. Guo, H. Du, F. Qu, J. Li, J. Mater. Chem. A 7 (2019) 3531-3543.
    [134]
    L. Li, C. Tang, X. Cui, Y. Zheng, X. Wang, H. Xu, S. Zhang, T. Shao, K. Davey, S. Z. Qiao, Angew. Chem. Int. Ed. 60 (2021) 14131-14137.
    [135]
    V. Rosca, M. Duca, M. T. de Groot, M. T. Koper, Chem. Rev. 109 (2009) 2209-2244.
    [136]
    M. Duca, M. T. M. Koper, Energy Environ. Sci. 5 (2012) 9726-9742.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (118) PDF downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return