Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Xiaolin Hu, Jichuan Fan, Ronghua Wang, Meng Li, Shikuan Sun, Chaohe Xu, Fusheng Pan. Vacancies and interfaces engineering of core-shell heterostuctured NiCoP/NiO as trifunctional electrocatalysts for overall water splitting and zinc-air batteries. Green Energy&Environment, 2023, 8(2): 601-611. doi: 10.1016/j.gee.2021.11.003
Citation: Xiaolin Hu, Jichuan Fan, Ronghua Wang, Meng Li, Shikuan Sun, Chaohe Xu, Fusheng Pan. Vacancies and interfaces engineering of core-shell heterostuctured NiCoP/NiO as trifunctional electrocatalysts for overall water splitting and zinc-air batteries. Green Energy&Environment, 2023, 8(2): 601-611. doi: 10.1016/j.gee.2021.11.003

Vacancies and interfaces engineering of core-shell heterostuctured NiCoP/NiO as trifunctional electrocatalysts for overall water splitting and zinc-air batteries

doi: 10.1016/j.gee.2021.11.003
  • The electronic structures and properties of electrocatalysts, which depend on the physicochemical structure and metallic element components, could significantly affect their electrocatalytic performance and their future applications in Zn-air battery (ZAB) and overall water splitting (OWS). Here, by combining vacancies and heterogeneous interfacial engineering, three-dimensional (3D) core–shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions. Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect. The oxygen vacancy can enable the emergence of new electronic states within the band gap, crossing the Fermi levels of the two spin components and optimizing the local electronic structure. Besides, the hierarchical core–shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites, faster mass transfer behavior, optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications.

     

  • loading
  • [1]
    X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang, J. Wen, R. Wang, C. Xu, N. Hu, J. Am. Chem. Soc., 142 (2020) 16776-16786.
    [2]
    D.C. Nguyen, D.T. Tran, T.L.L. Doan, D.H. Kim, N.H. Kim, J.H. Lee, Adv. Energy Mater., 10 (2020) 1903289.
    [3]
    C. Liu, W. Zhou, J. Zhang, Z. Chen, S. Liu, Y. Zhang, J. Yang, L. Xu, W. Hu, Y. Chen, Y. Deng, Adv. Energy Mater., 10 (2020) 2001397.
    [4]
    B. Cui, Z. Hu, C. Liu, S. Liu, F. Chen, S. Hu, J. Zhang, W. Zhou, Y. Deng, Z. Qin, Z. Wu, Y. Chen, L. Cui, W. Hu, Nano Res., 14 (2021) 1149-1155.
    [5]
    H. Wu, Q. Lu, J. Zhang, J. Wang, X. Han, N. Zhao, W. Hu, J. Li, Y. Chen, Y. Deng, Nano-Micro Lett., 12 (2020) 162.
    [6]
    C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc., 137 (2015) 4347-4357.
    [7]
    J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Cheng, Y. Li, P. Xi, S. Guo, Adv. Mater., 29 (2017) 1704681.
    [8]
    P. Tan, B. Chen, H. Xu, H. Zhang, W. Cai, M. Ni, M. Liu, Z. Shao, Energy Environ. Sci., 10 (2017) 2056-2080.
    [9]
    He. Wei, A. Tan, S. Hu, J. Piao, Z. Fu, Chin. J. Catal., 42 (2021) 1451-1458.
    [10]
    Y. Lv, X. Zhai, S. Wang, H. Xu, R. Wang, S. Zang, Chin. J. Catal., 42 (2021) 490-500.
    [11]
    X. Guo, X. Zheng, X. Hu, Q. Zhao, L. Li, P. Yu, C. Jing, Y. Zhang, G. Huang, B. Jiang, C. Xu, F. Pan, Nano Energy, 84 (2021) 105932.
    [12]
    X. Hu, G. Luo, X. Guo, Q. Zhao, R. Wang, G. Huang, B. Jiang, C. Xu, F. Pan, Sci. Bull., 66 (2021) 708-719.
    [13]
    Y. Li, Z. Dong, L. Jiao, Adv. Energy Mater., 10 (2020) 1902104.
    [14]
    C. Du, L. Yang, F. Yang, G. Cheng, W. Luo, ACS Catal., 7 (2017) 4131-4137.
    [15]
    D. Li, H. Baydoun, C.N. Verani, S.L. Brock, J. Am. Chem. Soc., 138 (2016) 4006-4009.
    [16]
    C. Baeumer, J. Li, Q. Lu, A.Y.-L. Liang, L. Jin, H.P. Martins, T. Duchon, M. Gloss, S.M. Gericke, M.A. Wohlgemuth, M. Giesen, E.E. Penn, R. Dittmann, F. Gunkel, R. Waser, M. Bajdich, S. Nemsak, J.T. Mefford, W.C. Chueh, Nat. Mater., 20 (2021) 674-682.
    [17]
    X. Gu, J.S.A. Carneiro, S. Samira, A. Das, N.M. Ariyasingha, E. Nikolla, J. Am. Chem. Soc., 140 (2018) 8128-8137.
    [18]
    Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang, S. Luo, C. Tian, M. Liu, X. Lu, Adv. Mater., 31 (2019) 1900178.
    [19]
    K. Chen, S. Ci, Q. Xu, P. Cai, M. Li, L. Xiang, X. Hu, Z. Wen, Chin. J. Catal., 41 (2020) 858-867.
    [20]
    H. Yan, Y. Xie, A. Wu, Z. Cai, L. Wang, C. Tian, X. Zhang, H. Fu, Adv. Mater., 31 (2019) 1901174.
    [21]
    W. Zhang, Y. Zou, H. Liu, S. Chen, X. Wang, H. Zhang, X. She, D. Yang, Nano Energy, 56 (2019) 813-822.
    [22]
    A. Kondori, M. Esmaeilirad, A. Baskin, B. Song, J. Wei, W. Chen, C.U. Segre, R. Shahbazian-Yassar, D. Prendergast, M. Asadi, Adv. Energy Mater., 9 (2019) 1900516.
    [23]
    J. Wang, W. Hua, M. Li, H. Liu, M. Shao, B. Wei, ACS Appl. Mater. Interfaces, 10 (2018) 41237-41245.
    [24]
    Q. Liang, L. Zhong, C. Du, Y. Luo, J. Zhao, Y. Zheng, J. Xu, J. Ma, C. Liu, S. Li, Q. Yan, ACS Nano, 13 (2019) 7975-7984.
    [25]
    C. Zhu, A. Wang, W. Xiao, D. Chao, X. Zhang, N.H. Tiep, S. Chen, J. Kang, X. Wang, J. Ding, J. Wang, H. Zhang, H. Fan, Adv. Mater., 30 (2018) 1705516.
    [26]
    C. Huang, X. Miao, C. Pi, B. Gao, X. Zhang, P. Qin, K. Huo, X. Peng, P.K. Chu, Nano Energy, 60 (2019) 520-526.
    [27]
    K. Zhu, F. Shi, X. Zhu, W. Yang, Nano Energy, 73 (2020) 104761.
    [28]
    Q. Du, Y. Gong, M.A. Khan, D. Ye, J. Fang, H. Zhao, J. Zhang, Green Energy Environ., (2021). https://doi.org/10.1016/j.gee.2021.01.018.
    [29]
    G. Kresse, J. Furthmuller, Phys. Rev. B, 54 (1996) 11169-11186.
    [30]
    J. Ren, Y. Wang, L. Chen, L. Gao, W. Tian, Z. Yuan, Chem. Eng. J., 389 (2020) 124408.
    [31]
    Z. Yang, C. Zhao, Y. Qu, H. Zhou, F. Zhou, J. Wang, Y. Wu, Y. Li, Adv. Mater., 31 (2019) 1808043.
    [32]
    H. Sun, Y. Min, W. Yang, Y. Lian, L. Lin, K. Feng, Z. Deng, M. Chen, J. Zhong, L. Xu, Y. Peng, ACS Catal., 9 (2019) 8882-8892.
    [33]
    P. Wang, C. Li, S. Dong, X. Ge, P. Zhang, X. Miao, R. Wang, Z. Zhang, L. Yin, Adv. Energy Mater., 9 (2019) 1900788.
    [34]
    H. Yang, L. Gong, H. Wang, C. Dong, J. Wang, K. Qi, H. Liu, X. Guo, B.Y. Xia, Nat. Commun., 11 (2020) 5075.
    [35]
    J. Jin, J. Yin, H. Liu, P. Xi, Chin. J. Catal., 40 (2019) 43-51.
    [36]
    H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji, J. Li, Energy Environ. Sci., 12 (2019) 322-333.
    [37]
    J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu, T. Ma, Adv. Mater., 32 (2020) 2003134.
    [38]
    C. Hou, L. Zou, Y. Wang, Q. Xu, Angew. Chem. Int. Ed., 59 (2020) 21360-21366.
    [39]
    H. Zhou, F. Yu, J. Sun, R. He, S. Chen, C.-W. Chu, Z. Ren, Proc. Natl. Acad. Sci., (2017) 201701562.
    [40]
    J. Zhang, Z. Chen, C. Liu, J. Zhao, S. Liu, D. Rao, A. Nie, Y. Chen, Y. Deng, W. Hu, Sci. China Mater., 63 (2020) 249-257.
    [41]
    C. Zhao, J. Liu, J. Wang, D. Ren, J. Yu, X. Chen, B. Li, Q. Zhang, Adv. Mater., (2021) 2008606.
    [42]
    X. Liu, L. Zhang, Y. Zheng, Z. Guo, Y. Zhu, H. Chen, F. Li, P. Liu, B. Yu, X. Wang, J. Liu, Y. Chen, M. Liu, Adv. Sci., 6 (2019) 1801898.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (192) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return