Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Guanyu Mu, Yan Zeng, Yong Zheng, Yanning Cao, Fujian Liu, Shijing Liang, Yingying Zhan, Lilong Jiang. Oxygen vacancy defects engineering on Cu-doped Co3O4 for promoting effective COS hydrolysis. Green Energy&Environment, 2023, 8(3): 831-841. doi: 10.1016/j.gee.2021.11.001
Citation: Guanyu Mu, Yan Zeng, Yong Zheng, Yanning Cao, Fujian Liu, Shijing Liang, Yingying Zhan, Lilong Jiang. Oxygen vacancy defects engineering on Cu-doped Co3O4 for promoting effective COS hydrolysis. Green Energy&Environment, 2023, 8(3): 831-841. doi: 10.1016/j.gee.2021.11.001

Oxygen vacancy defects engineering on Cu-doped Co3O4 for promoting effective COS hydrolysis

doi: 10.1016/j.gee.2021.11.001
  • The activation of H2O is a key step of the COS hydrolysis, which may be tuned by oxygen vacancy defects in the catalysts. Herein, we have introduced Cu into Co3O4 to regulate the oxygen vacancy defect content of the catalysts. In situ DRIFTS and XPS spectra reveal that COS and H2O are adsorbed and activated by oxygen vacancy. The 10 at% Cu doped Co3O4 sample (10CuCo3O4) exhibits the optimal activity, 100% of COS conversion at 70 ℃. The improved oxygen vacancies of CuCo3O4 accelerate the activation of H2O to form active OH. COS binds with hydroxyl to form the intermediate HSCO2-, and then the activated -OH on the oxygen vacancy reacts with to form . Meanwhile, the catalyst exhibits high catalytic stability because copper species (Cu+/Cu2+) redox cycle mitigate the sulfation of Co3O4 (Co2+/Co3+). Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process.

     

  • loading
  • [1]
    S. Zhao, D. Kang, Y. Liu, Y. Wen, X. Xie, H. Yi, X. Tang, ACS Catal. 10 (2020) 11739-11750.
    [2]
    F. Guo, S. Li, Y. Hou, J. Xu, S. Lin, X. Wang, Chem. Commun. 55 (2019) 11259-11262.
    [3]
    L. Shen, G. Wang, X. Zheng, Y. Cao, Y. Guo, K. Lin, L. Jiang, Chin. J. Catal. 38 (2017) 1373-1381.
    [4]
    H. Yi, K. Li, X. Tang, P. Ning, J. Peng, C. Wang, D. He, Chem. Eng. J. 230 (2013) 220-226.
    [5]
    G. Guo, H. Guo, F. Wang, Liam. France, W, Yang, Z. Mei, Y. Yu, Green Energy Environ. 5 (2020) 114-120.
    [6]
    X. Song, X. Chen, L. Sun, K. Li, X. Sun, C. Wang, P. Ning, Chem. Eng. J. 399 (2020) 125764.
    [7]
    X. Liu, G. Zhangsun, Y. Zheng, S. Liang, Y. Cao, F. Liu, Y. Xiao, L. Jiang, Ind. Eng. Chem. Res. 60 (2021) 2101-2111.
    [8]
    Y. Song, B. Peng, X. Yang, Q. Jiang, J. Liu, W. Lin, Green Energy Environ. 6 (2021) 597-606.
    [9]
    Y. Zou, C. Wang, H. Chen, H. Ji, Q. Zhu, W. Yang, L. Chen, Z. Chen, W. Zhu, Green Energy Environ. 6 (2021) 169-175.
    [10]
    A. Bagreev, F. Adib, TJ. Bandosz, Carbon 39 (2001) 1897-1905.
    [11]
    Z. Wei, X. Zhang, F. Zhang, Q. Xie, S. Zhao, Z. Hao, J. Hazard. Mater. 407 (2021) 124546.
    [12]
    X. Song, K. Li, C. Wang, X. Sun, P. Ning, L. Tang, Chem. Eng. J. 330 (2017) 727-735.
    [13]
    S. Zhao, H. Yi, X. Tang, F. Gao, Q. Yu, J. Wang, Y. Huang, Z. Yang, Catal. Today 355 (2020) 415-421.
    [14]
    Y. Liu, C. Song, Y. Wang, W. Cao, Y. Lei, Q. Feng, Z. Chen, S. Liang, L. Xu, L. Jiang, Chem. Eng. J. 401 (2020) 126038.
    [15]
    J. Bae, D. Shin, H. Jeong, B.-S. Kim, J. W. Han, H. Lee, ACS Catal. 9 (2019) 10093-10100.
    [16]
    H. Yuan, S. Wang, Z. Ma, M. Kundu, B. Tang, J. Li, X. Wang, Chem. Eng. J. 404 (2021) 126474.
    [17]
    W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang, Y. Zou, Y. Wang, R. Chen, S. Wang, Adv. Mater. 32 (2020) 1907879.
    [18]
    W. Liao, K. Xie, L. Liu, X. Wang, Y. Luo, S. Liang, F. Liu, L. Jiang, J. Energy Chem. 62 (2021) 359-366.
    [19]
    E. Wu, X. Feng, Y. Zheng, D. Lin, Y. Luo, Y. You, B. Huang, Q. Qian, Q. Chen, ACS Sustain. Chem. Eng. 8 (2020) 5787-5798.
    [20]
    T. M. Lima, V. de Macedo, D. S. A. Silva, W. N. Castelblanco, C. A. Pereira, R. E. Roncolatto, M. B. Gawande, R. Zboril, R. S. Varma, E. A. Urquieta-Gonzalez, Appl. Catal. B-Environ. 277 (2020) 119248.
    [21]
    X. Zheng, Y. Li, Y. Zheng, L. Shen, Y. Xiao, Y. Cao, Y. Zhang, C. Au, L. Jiang, ACS Catal. 10 (2020) 3968-3983.
    [22]
    X. Zheng, Y. Li, S. Liang, Z. Yao, Y. Zheng, L. Shen, Y. Xiao, Y. Zhang, C. Au, L. Jiang, J. Catal. 389 (2020) 382-399.
    [23]
    L. He, Z. Li and Z. Zhang, Nanotechnology 19 (2008) 155606.
    [24]
    Y. Lou, J. Ma, X. Cao, L. Wang, Q. Dai, Z. Zhao, Y. Cai, W. Zhan, Y. Guo, P. Hu, G. Lu, Y. Guo, ACS Catal. 4 (2014) 4143-4152.
    [25]
    X. Wei, S. Barkaoui, J. Chen, G. Cao, Z. Wu, F. Wang, G. Li, Nanoscale Adv. 3 (2021) 1741-1746.
    [26]
    A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem. Soc. 134 (2012) 7600-7603.
    [27]
    S. Asadizadeh, M. Amirnasr, S. Meghdadi, F. Fadaei Tirani, K. Schenk, Int. J. Hydrog. Energy 43 (2018) 4922-4931.
    [28]
    J. Shu, X. Huang, M. Cao, Carbon 174 (2021) 638-646.
    [29]
    X. Zheng, G. Zhang, Z. Yao, Y. Zheng, L. Shen, F. Liu, Y. Cao, S. Liang, Y. Xiao, L. Jiang, J. Hazard. Mater. 411 (2021) 125180.
    [30]
    S. Rong, K. Li, P. Zhang, F. Liu, J. Zhang, Catal. Sci. Technol. 8 (2018) 1799-1812.
    [31]
    X. Zheng, Y. Li, W. You, G. Lei, Y. Cao, Y. Zhang, L. Jiang, Chem. Eng. J. 430 (2021) 132917.
    [32]
    B. Wu, C. Shan, X. Zhang, H. Zhao, S. Ma, Y. Shi, J. Yang, H. Bai, Q. Liu, Appl. Surf. Sci. 543 (2021) 148677.
    [33]
    M. N. Goda, A. E.-A. A. Said, M. A. El-Aal, Mol. Catal. 494 (2020) 111121.
    [34]
    X. Zheng, Y. Li, L. Zhang, L. Shen, Y. Xiao, Y. Zhang, C. Au, L. Jiang, Appl. Catal. B-Environ. 252 (2019) 98-110.
    [35]
    Y. Xiao, X. Zheng, X. Chen, L. Jiang, Y. Zheng, Ind. Eng. Chem. Res. 56 (2017) 1687-1695.
    [36]
    X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun, Y. Zhang, B. Wang, W. Du, Chem. Eng. J. 396 (2020) 125205.
    [37]
    K. Li, G. Liu, C. Wang, K. Li, X. Sun, X. Song, P. Ning, Catal. Commun. 144 (2020) 106093.
    [38]
    L. Shen, X. Zheng, G. Lei, X. Li, Y. Cao, L. Jiang, Chem. Eng. J. 346 (2018) 238-248.
    [39]
    X. Zheng, J. Cai, Y. Cao, L. Shen, Y. Zheng, F. Liu, S. Liang, Y. Xiao, L. Jiang, Appl. Catal. B-Environ. 297 (2021) 120402.
    [40]
    J. Mi, Y. Cao, J. Zhang, Y. Ma, C. Chen, D. Li, X. Lin, L. Jiang, Appl. Catal. A-Gen. 553 (2018) 36-42.
    [41]
    J. Yang, S. Hu, Y. Fang, S. Hoang, L. Li, W. Yang, Z. Liang, J. Wu, J. Hu, W. Xiao, C. Pan, Z. Luo, J. Ding, L. Zhang, Y. Guo, ACS Catal. 9 (2019) 9751-9763.
    [42]
    S. Mo, Q. Zhang, J. Li, Y. Sun, Q. Ren, S. Zou, Q. Zhang, J. Lu, M. Fu, D. Mo, J. Wu, H. Huang, D. Ye, Appl. Catal. B-Environ. 264 (2020) 118464.
    [43]
    S. Chen, H. Xie, G. Zhou, Ceram. Int. 45 (2019) 24609-24617.
    [44]
    X. W. Lv, Y. Liu, R. Hao, W. Tian, Z. Y. Yuan, ACS Appl. Mater. Interfaces 12 (2020) 17502-17508.
    [45]
    X. Wang, T.-T. Li, Y.-Q. Zheng, Int. J. Hydrog. Energy 43 (2018) 2009-2017.
    [46]
    Y. Liu, H. He, W. Xu, Y. Yu, J. Phys. Chem. A 111 (2007) 4333-4339.
    [47]
    D. Kang, X. Yu, M. Ge, M. Lin, X. Yang, Y. Jing, Chem. Eng. J. 345 (2018) 252-259.
    [48]
    X. Yu, S. Tong, M. Ge, J. Zuo, Carbohydr. Polym. 92 (2013) 269-275.
    [49]
    S. Yoshizawa, Z. Huang, K. Teramura, H. Asakura, S. Hosokawa, T. Tanaka, ACS Appl. Mater. Interfaces 11 (2019) 37875-37884.
    [50]
    JI. Di Cosimo, VK. Diez, M. Xu, E. Lglesia, CR. Apesteguia, J. Catal. 178 (1998) 499-510.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (140) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return