Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Dashuai Wang, Runfeng Cao, Shaogang Hao, Chen Liang, Guangyong Chen, Pengfei Chen, Yang Li, Xiaolong Zou. Accelerated prediction of Cu-based single-atom alloy catalysts for CO2 reduction by machine learning. Green Energy&Environment, 2023, 8(3): 820-830. doi: 10.1016/j.gee.2021.10.003
Citation: Dashuai Wang, Runfeng Cao, Shaogang Hao, Chen Liang, Guangyong Chen, Pengfei Chen, Yang Li, Xiaolong Zou. Accelerated prediction of Cu-based single-atom alloy catalysts for CO2 reduction by machine learning. Green Energy&Environment, 2023, 8(3): 820-830. doi: 10.1016/j.gee.2021.10.003

Accelerated prediction of Cu-based single-atom alloy catalysts for CO2 reduction by machine learning

doi: 10.1016/j.gee.2021.10.003
  • Various strategies, including controls of morphology, oxidation state, defect, and doping, have been developed to improve the performance of Cu-based catalysts for CO2 reduction reaction (CO2RR), generating a large amount of data. However, a unified understanding of underlying mechanism for further optimization is still lacking. In this work, combining first-principles calculations and machine learning (ML) techniques, we elucidate critical factors influencing the catalytic properties, taking Cu-based single atom alloys (SAAs) as examples. Our method relies on high-throughput calculations of 2669 CO adsorption configurations on 43 types of Cu-based SAAs with various surfaces. Extensive ML analyses reveal that low generalized coordination numbers and valence electron number are key features to determine catalytic performance. Applying our ML model with cross-group learning scheme, we demonstrate the model generalizes well between Cu-based SAAs with different alloying elements. Further, electronic structure calculations suggest surface negative center could enhance CO adsorption by back donating electrons to antibonding orbitals of CO. Finally, several SAAs, including PCu, AgCu, GaCu, ZnCu, SnCu, GeCu, InCu, and SiCu, are identified as promising CO2RR catalysts. Our work provides a paradigm for the rational design and fast screening of SAAs for various electrocatalytic reactions.

     

  • loading
  • [1]
    K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, J. Am. Chem. Soc. 136 (2014) 14107-14113.
    [2]
    M.G. Kibria, J.P. Edwards, C.M. Gabardo, C.-T. Dinh, A. Seifitokaldani, D. Sinton, E.H. Sargent, Adv. Mater. 31 (2019) 1807166.
    [3]
    Y. Hori, K. Kikuchi, S. Suzuki, Chem. Lett. 14 (1985) 1695-1698.
    [4]
    A.A. Peterson, J.K. Noerskov, J. Phys. Chem. Lett. 3 (2012) 251-258.
    [5]
    R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T.M. Koper, J. Phys. Chem. Lett. 6 (2015) 4073-4082.
    [6]
    B. Hagman, A. Posada-Borbon, A. Schaefer, M. Shipilin, C. Zhang, L.R. Merte, A. Hellman, E. Lundgren, H. Gronbeck, J. Gustafson, J. Am. Chem. Soc. 140 (2018) 12974-12979.
    [7]
    A. Bagger, W. Ju, A.S. Varela, P. Strasser, J. Rossmeisl, ACS Catal. 9 (2019) 7894-7899.
    [8]
    C. Tang, J. Shi, X. Bai, A. Hu, N. Xuan, Y. Yue, T. Ye, B. Liu, P. Li, P. Zhuang, J. Shen, Y. Liu, Z. Sun, ACS Catal. 10 (2020) 2026-2032.
    [9]
    D. Ren, J. Fong, B.S. Yeo, Nat. Commun. 9 (2018) 1-8.
    [10]
    K. Tran, Z.W. Ulissi, Nat. Catal. 1 (2018) 696-703.
    [11]
    M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C.-T. Dinh, P. De Luna, Z. Yu, A.S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C.-S. Tan, M. Askerka, F. Che, M. Liu, A. Seifitokaldani, Y. Pang, S.-C. Lo, A. Ip, Z. Ulissi, E.H. Sargent, Nature 581 (2020) 178-183.
    [12]
    Y. Chen, Z. Fan, J. Wang, C. Ling, W. Niu, Z. Huang, G. Liu, B. Chen, Z. Lai, X. Liu, B. Li, Y. Zong, L. Gu, J. Wang, X. Wang, H. Zhang, J. Am. Chem. Soc. 142 (2020) 12760-12766.
    [13]
    Y. Hori, I. Takahashi, O. Koga, N. Hoshi, J. Mol. Catal. Chem. 199 (2003) 39-47.
    [14]
    D. Cheng, Z.-J. Zhao, G. Zhang, P. Yang, L. Li, H. Gao, S. Liu, X. Chang, S. Chen, T. Wang, G.A. Ozin, Z. Liu, J. Gong, Nat. Commun. 12 (2021) 395.
    [15]
    J.H. Montoya, C. Shi, K. Chan, J.K. Noerskov, J. Phys. Chem. Lett. 6 (2015) 2032-2037.
    [16]
    C.W. Li, J. Ciston, M.W. Kanan, Nature 508 (2014) 504-507.
    [17]
    Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T.-K. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen, E.H. Sargent, Nat. Chem. 10 (2018) 974-980.
    [18]
    D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Nat. Commun. 5 (2014) 4948.
    [19]
    S. Zhang, P. Kang, M. Bakir, A.M. Lapides, C.J. Dares, T.J. Meyer, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 15809-15814.
    [20]
    R.T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Chem. Rev. 120 (2020) 12044-12088.
    [21]
    J. Perez-Ramirez, N. Lopez, Nat. Catal. 2 (2019) 971-976.
    [22]
    M.-J. Cheng, E.L. Clark, H.H. Pham, A.T. Bell, M. Head-Gordon, ACS Catal. 6 (2016) 7769-7777.
    [23]
    H. Xu, D. Cheng, D. Cao, X.C. Zeng, Nat. Catal. 1 (2018) 339-348.
    [24]
    L. Zhang, H. Liu, S. Liu, M. Norouzi Banis, Z. Song, J. Li, L. Yang, M. Markiewicz, Y. Zhao, R. Li, ACS Catal. 9 (2019) 9350-9358.
    [25]
    C. Chen, D. Wu, Z. Li, R. Zhang, C. Kuai, X. Zhao, C. Dong, S. Qiao, H. Liu, X. Du, Adv. Energy Mater. 9 (2019) 1803913.
    [26]
    K. Chan, J.K. Noerskov, J. Phys. Chem. Lett. 7 (2016) 1686-1690.
    [27]
    K. Chan, J.K. Noerskov, J. Phys. Chem. Lett. 6 (2015) 2663-2668.
    [28]
    K. Chan, Nat. Commun. 11 (2020) 5954.
    [29]
    L. Gong, D. Zhang, C. Lin, Y. Zhu, Y. Shen, J. Zhang, X. Han, L. Zhang, Z. Xia, Adv. Energy Mater. 9 (2019) 1902625.
    [30]
    G. Luo, Y. Jing, Y. Li, J. Mater. Chem. 8 (2020) 15809-15815.
    [31]
    S. Liu, H. Yang, X. Huang, L. Liu, W. Cai, J. Gao, X. Li, T. Zhang, Y. Huang, B. Liu, Adv. Funct. Mater. 28 (2018) 1800499.
    [32]
    J. Zhao, J. Zhao, F. Li, Z. Chen, J. Phys. Chem. C 122 (2018) 19712-19721.
    [33]
    X. Liu, J. Xiao, H. Peng, X. Hong, K. Chan, J.K. Noerskov, Nat. Commun. 8 (2017) 15438.
    [34]
    J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Noerskov, Nat. Mater. 5 (2006) 909-913.
    [35]
    T. Cheng, H. Xiao, W.A. Goddard, J. Am. Chem. Soc. 139 (2017) 11642-11645.
    [36]
    X. Zou, M. Liu, J. Wu, P.M. Ajayan, J. Li, B. Liu, B.I. Yakobson, ACS Catal. 7 (2017) 6245-6250.
    [37]
    A. Chen, X. Zhang, L. Chen, S. Yao, Z. Zhou, J. Phys. Chem. C 124 (2020) 22471-22478.
    [38]
    Z. Song, X. Chen, F. Meng, G. Cheng, C. Wang, Z. Sun, W. Yin, Chin. Phys. B 29 (2020) 116103.
    [39]
    X. Ma, Z. Li, L.E.K. Achenie, H. Xin, J. Phys. Chem. Lett. 6 (2015) 3528-3533.
    [40]
    Z. Yang, W. Gao, Q. Jiang, J. Mater. Chem. 8 (2020) 17507-17515.
    [41]
    N. Artrith, K.T. Butler, F.-X. Coudert, S. Han, O. Isayev, A. Jain, A. Walsh, Nat. Chem. 13 (2021) 505-508.
    [42]
    F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl, K. Morgenstern, D. Loffreda, P. Sautet, W. Schuhmann, A.S. Bandarenka, Science 350 (2015) 185.
    [43]
    F. Calle-Vallejo, J.I. Martinez, J.M. Garcia-Lastra, P. Sautet, D. Loffreda, Angew. Chem. Int. Ed. 53 (2014) 8316-8319.
    [44]
    T. Toyao, K. Suzuki, S. Kikuchi, S. Takakusagi, K. Shimizu, I. Takigawa, J. Phys. Chem. C 122 (2018) 8315-8326.
    [45]
    S. Saxena, T.S. Khan, F. Jalid, M. Ramteke, M.A. Haider, J. Mater. Chem. 8 (2020) 107-123.
    [46]
    Z. Lu, S. Yadav, C.V. Singh, Catal. Sci. Technol. 10 (2020) 86-98.
    [47]
    K. Pearson, Proc. Roy. Soc. Lond. 58 (1895) 240-242.
    [48]
    Y. Chen, Y. Huang, T. Cheng, W.A. Goddard, J. Am. Chem. Soc. 141 (2019) 11651-11657.
    [49]
    G.W. Dombi, P. Nandi, J.M. Saxe, A.M. Ledgerwood, C.E. Lucas, J Trauma Acute Care Surg 39 (1995) 915-921.
    [50]
    J.B. Tenenbaum, Science 290 (2000) 2319-2323.
    [51]
    T.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P. De Luna, T. Burdyny, F. Che, F. Meng, Y. Min, R. Quintero-Bermudez, C.T. Dinh, Y. Pang, M. Zhong, B. Zhang, J. Li, P.-N. Chen, X.-L. Zheng, H. Liang, W.-N. Ge, B.-J. Ye, D. Sinton, S.-H. Yu, E.H. Sargent, Nat. Catal. 1 (2018) 421-428.
    [52]
    A. Vasileff, X. Zhi, C. Xu, L. Ge, Y. Jiao, Y. Zheng, S.-Z. Qiao, ACS Catal. 9 (2019) 9411-9417.
    [53]
    H.S. Jeon, J. Timoshenko, F. Scholten, I. Sinev, A. Herzog, F.T. Haase, B. Roldan Cuenya, J. Am. Chem. Soc. 141 (2019) 19879-19887.
    [54]
    J. Jiao, R. Lin, S. Liu, W.-C. Cheong, C. Zhang, Z. Chen, Y. Pan, J. Tang, K. Wu, S.-F. Hung, H.M. Chen, L. Zheng, Q. Lu, X. Yang, B. Xu, H. Xiao, J. Li, D. Wang, Q. Peng, C. Chen, Y. Li, Nat. Chem. 11 (2019) 222-228.
    [55]
    J. Gu, Y. Zhao, S. Lin, J. Huang, C.R. Cabrera, B.G. Sumpter, Z. Chen, J. Energy Chem. (2021) S2095495621004277.
    [56]
    M.D. Marcinkowski, M.T. Darby, J. Liu, J.M. Wimble, F.R. Lucci, S. Lee, A. Michaelides, M. Flytzani-Stephanopoulos, M. Stamatakis, E.C.H. Sykes, Nat. Chem. 10 (2018) 325-332.
    [57]
    L. Wang, D.C. Higgins, Y. Ji, C.G. Morales-Guio, K. Chan, C. Hahn, T.F. Jaramillo, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 12572-12575.
    [58]
    H. Xu, D. Cheng, Green Energy Environ. 5 (2020) 286-302.
    [59]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
    [60]
    G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
    [61]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
    [62]
    B. Hammer, L.B. Hansen, J.K. Noerskov, Phys. Rev. B 59 (1999) 7413.
    [63]
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
    [64]
    F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Mach. Learn. Res. 12 (2011) 2825-2830.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (305) PDF downloads(31) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return