Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Yifei Wang, Wending Pan, Kee Wah Leong, Yingguang Zhang, Xiaolong Zhao, Shijing Luo, Dennis Y. C. Leung. Paper-based aqueous Al ion battery with water-in-salt electrolyte. Green Energy&Environment, 2023, 8(5): 1380-1388. doi: 10.1016/j.gee.2021.10.001
Citation: Yifei Wang, Wending Pan, Kee Wah Leong, Yingguang Zhang, Xiaolong Zhao, Shijing Luo, Dennis Y. C. Leung. Paper-based aqueous Al ion battery with water-in-salt electrolyte. Green Energy&Environment, 2023, 8(5): 1380-1388. doi: 10.1016/j.gee.2021.10.001

Paper-based aqueous Al ion battery with water-in-salt electrolyte

doi: 10.1016/j.gee.2021.10.001
  • Low-cost, flexible and safe battery technology is the key to the widespread usage of wearable electronics, among which the aqueous Al ion battery with water-in-salt electrolyte is a promising candidate. In this work, a flexible aqueous Al ion battery is developed using cellulose paper as substrate. The water-in-salt electrolyte is stored inside the paper, while the electrodes are either printed or attached on the paper surface, leading to a lightweight and thin-film battery prototype. Currently, this battery can tolerate a charge and discharge rate as high as 4 A g−1 without losing its storage capacity. The charge voltage is around 2.2 V, while the discharge plateau of 1.6-1.8 V is among the highest in reported aqueous Al ion batteries, together with a high discharge specific capacity of ~140 mAh g−1. However, due to the water electrolysis side reaction, the faradaic efficiency can only reach 85% with a cycle life of 250 due to the dry out of electrolyte. Benefited from using flexible materials and aqueous electrolyte, this paper-based Al ion battery can tolerate various deformations such as bending, rolling and even puncturing without losing its performance. When two single cells are connected in series, the battery pack can provide a charge voltage of 4.3 V and a discharge plateau as high as 3-3.6 V, which are very close to commercial Li ion batteries. Such a cheap, flexible and safe battery technology may be widely applied in low-cost and large-quantity applications, such as RFID tags, smart packages and wearable biosensors in the future.

     

  • loading
  • [1]
    T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Chem. Rev. (2020).
    [2]
    T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad, M.I. Shahzad, Renew. Sustain. Energy Rev. 119 (2020) 109549.
    [3]
    G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 3 (2018) 2480-2501.
    [4]
    Z. Ma, D.R. Macfarlane, M. Kar, Batter. Supercaps 2 (2019) 115-127.
    [5]
    S.K. Das, S. Mahapatra, H. Lahan, J. Mater. Chem. 5 (2017) 6347-6367.
    [6]
    F. Beck, P. Ruetschi, Electrochim. Acta 45 (2000) 2467-2482.
    [7]
    Y. Wang, H. Kwok, W. Pan, H. Zhang, D.Y. Leung, J. Power Sources 414 (2019) 278-282.
    [8]
    S. Liu, J. Hu, N. Yan, G. Pan, G. Li, X. Gao, Energy Environ. Sci. 5 (2012) 9743-9746.
    [9]
    Y. Liu, S. Sang, Q. Wu, Z. Lu, K. Liu, H. Liu, Electrochim. Acta 143 (2014) 340-346.
    [10]
    J. Gonzalez, F. Nacimiento, M. Cabello, R. Alcantara, P. Lavela, J. Tirado, RSC Adv. 6 (2016) 62157-62164.
    [11]
    S. Liu, G. Pan, G. Li, X. Gao, J. Mater. Chem. 3 (2015) 959-962.
    [12]
    B. Jin, S. Hejazi, H. Chu, G. Cha, M. Altomare, M. Yang, P. Schmuki, Nanoscale 13 (2021) 6087-6095.
    [13]
    L. Yan, X. Zeng, S. Zhao, W. Jiang, Z. Li, X. Gao, T. Liu, Z. Ji, T. Ma, M. Ling, ACS Appl. Mater. Interfaces 13 (2021) 8353-8360.
    [14]
    J. Joseph, J. Nerkar, C. Tang, A. Du, A.P. O'mullane, K.K. Ostrikov, ChemSusChem 12 (2019) 3753-3760.
    [15]
    Y. Ru, S. Zheng, H. Xue, H. Pang, Chem. Eng. J. 382 (2020) 122853.
    [16]
    Q. Pang, S. Yang, X. Yu, W. He, S. Zhang, Y. Tian, M. Xing, Y. Fu, X. Luo, J. Alloys Compd. 885 (2021) 161008.
    [17]
    S. Sang, Y. Liu, W. Zhong, K. Liu, H. Liu, Q. Wu, Electrochim. Acta 187 (2016) 92-97.
    [18]
    M. Kazazi, P. Abdollahi, M. Mirzaei-Moghadam, Solid State Ionics 300 (2017) 32-37.
    [19]
    H. Lahan, R. Boruah, A. Hazarika, S.K. Das, J. Phys. Chem. C 121 (2017) 26241-26249.
    [20]
    M. Ojeda, B. Chen, D.Y. Leung, J. Xuan, H. Wang, Energy Procedia 105 (2017) 3997-4002.
    [21]
    A. Holland, R. Mckerracher, A. Cruden, R. Wills, J. Appl. Electrochem. 48 (2018) 243-250.
    [22]
    S. Nandi, S.K. Das, ACS Sustain. Chem. Eng. 7 (2019) 19839-19847.
    [23]
    S. Nandi, H. Lahan, S.K. Das, Bull. Mater. Sci. 43 (2020) 1-7.
    [24]
    J. Joseph, A.P. O'mullane, K. Ostrikov, ChemElectroChem 6 (2019) 6002-6008.
    [25]
    H. Lahan, S.K. Das, J. Power Sources 413 (2019) 134-138.
    [26]
    H. Lahan, S.K. Das, Ionics 25 (2019) 3493-3498.
    [27]
    S. He, J. Wang, X. Zhang, J. Chen, Z. Wang, T. Yang, Z. Liu, Y. Liang, B. Wang, S. Liu, Adv. Funct. Mater. 29 (2019) 1905228.
    [28]
    C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li, Y. Yuan, H. Wang, X. Liu, Y. Yuan, N. Zhu, Nat. Commun. 10 (2019) 1-10.
    [29]
    Y. Cai, S. Kumar, R. Chua, V. Verma, D. Yuan, Z. Kou, H. Ren, H. Arora, M. Srinivasan, J. Mater. Chem. 8 (2020) 12716-12722.
    [30]
    Y. Gao, H. Yang, X. Wang, Y. Bai, N. Zhu, S. Guo, L. Suo, H. Li, H. Xu, C. Wu, ChemSusChem 13 (2020) 732-740.
    [31]
    S. Kumar, V. Verma, H. Arora, W. Manalastas Jr, M. Srinivasan, ACS Appl. Energy Mater. 3 (2020) 8627-8635.
    [32]
    C. Yan, C. Lv, L. Wang, W. Cui, L. Zhang, K.N. Dinh, H. Tan, C. Wu, T. Wu, Y. Ren, J. Am. Chem. Soc. 142 (2020) 15295-15304.
    [33]
    W. Pan, Y. Wang, Y. Zhang, H.Y.H. Kwok, M. Wu, X. Zhao, D.Y. Leung, J. Mater. Chem. 7 (2019) 17420-17425.
    [34]
    A.M. Zamarayeva, A.E. Ostfeld, M. Wang, J.K. Duey, I. Deckman, B.P. Lechene, G. Davies, D.A. Steingart, A.C. Arias, Sci. Adv. 3 (2017) e1602051.
    [35]
    P. Wang, Z. Chen, Z. Ji, Y. Feng, J. Wang, J. Liu, M. Hu, H. Wang, W. Gan, Y. Huang, Chem. Eng. J. 373 (2019) 580-586.
    [36]
    S. Liu, P. Wang, C. Liu, Y. Deng, S. Dou, Y. Liu, J. Xu, Y. Wang, W. Liu, W. Hu, Small 16 (2020) 2002856.
    [37]
    P. Wang, Z. Chen, H. Wang, Z. Ji, Y. Feng, J. Wang, J. Liu, M. Hu, J. Fei, W. Gan, Energy Stor. Mater. 25 (2020) 426-435.
    [38]
    T.H. Nguyen, A. Fraiwan, S. Choi, Biosens. Bioelectron. 54 (2014) 640-649.
    [39]
    D. Yuan, J. Zhao, W. Manalastas Jr, S. Kumar, M. Srinivasan, Nano Mater. Sci. (2019).
    [40]
    X. Cai, Y. Song, Z. Sun, D. Guo, X.-X. Liu, J. Power Sources 365 (2017) 126-133.
    [41]
    Y. Liu, M. Pharr, G.A. Salvatore, ACS Nano 11 (2017) 9614-9635.
    [42]
    A. Nag, S.C. Mukhopadhyay, J. Kosel, IEEE Sensor. J. 17 (2017) 3949-3960.
    [43]
    Y. Wang, H. Wang, J. Xuan, D.Y. Leung, Biosens. Bioelectron. (2020) 112410.
    [44]
    Y. Wang, H.Y. Kwok, W. Pan, Y. Zhang, H. Zhang, X. Lu, D.Y. Leung, Electrochim. Acta 319 (2019) 947-957.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (137) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return