Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Shiming Zhang, Qianhao Pan, Yapei Wang. Sunlight-controlled CO2 separation resulting from a biomass-based CO2 absorber. Green Energy&Environment, 2022, 7(3): 566-574. doi: 10.1016/j.gee.2021.09.001
Citation: Shiming Zhang, Qianhao Pan, Yapei Wang. Sunlight-controlled CO2 separation resulting from a biomass-based CO2 absorber. Green Energy&Environment, 2022, 7(3): 566-574. doi: 10.1016/j.gee.2021.09.001

Sunlight-controlled CO2 separation resulting from a biomass-based CO2 absorber

doi: 10.1016/j.gee.2021.09.001
  • Renewable solid sorbents for CO2 capture and storage have shown great potentials for the sake of gaseous separation, tail gas treatment, environmental regulation and climate governance. However, current existed preparation and reusability of solid sorbents are generally subject to high energy consumption and complicated procedure. Herein, a light-controlled CO2 separation system with high working temperature resulting from natural sawdust combined with polyethyleneimine is fabricated, which involves low energy input and few operating sequences. This system shows a direct and ratiometric response to sunlight illumination by which CO2 can be reversibly adsorbed and released. This light-controlled CO2 separation process is prospective to become an attractive alternative to traditional alkaline CO2 collection method in terms of its convenience and low cost. As a practical demonstration, CO2 mixed with N2 is successfully separated through this light-controlled carbon capture and storage (CCS) system, which offers great promise for CO2 capture and enrichment with applicability across a wide range of scales.

     

  • loading
  • [1]
    G. Singh, J. Lee, A. Karakoti, R. Bahadur, J. Yi, D. Zhao, K. Albahily, A. Vinu, Chem. Soc. Rev. 49 (2020) 4360-4404.
    [2]
    C. Mora, D. Spirandelli, E.C. Franklin, J. Lynham, M.B. Kantar, W. Miles, C.Z. Smith, K. Freel, J. Moy, L.V. Louis, E.W. Barba, K. Bettinger, A.G. Frazier, J.F. Colburn Ix, N. Hanasaki, E. Hawkins, Y. Hirabayashi, W. Knorr, C.M. Little, K. Emanuel, J. Sheffield, J.A. Patz, C.L. Hunter, Nat. Clim. Chang. 8 (2018) 1062-1071.
    [3]
    M. Zemp, M. Huss, E. Thibert, N. Eckert, R. Mcnabb, J. Huber, M. Barandun, H. Machguth, S.U. Nussbaumer, I. Gartner-Roer, L. Thomson, F. Paul, F. Maussion, S. Kutuzov, J.G. Cogley, Nature 568 (2019) 382-386.
    [4]
    T. Buchholz, S. Prisley, G. Marland, C. Canham, N. Sampson, Nat. Clim. Chang. 4 (2014) 1045-1047.
    [5]
    S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Chem. Rev. 117 (2017) 9625-9673.
    [6]
    X.-F. Liu, X.-Y. Li, C. Qiao, H.-C. Fu, L.-N. He, Angew. Chem. Int. Ed. 56 (2017) 7425-7429.
    [7]
    M.-Y. Wang, X. Jin, X. Wang, S. Xia, Y. Wang, S. Huang, Y. Li, L.-N. He, X. Ma, Angew. Chem. Int. Ed. 60 (2021) 3984-3988.
    [8]
    G. Cui, J. Wang, S. Zhang, Chem. Soc. Rev. 45 (2016) 4307-4339.
    [9]
    W. Lu, B. Jia, B. Cui, Y. Zhang, K. Yao, Y. Zhao, J. Wang, Angew. Chem. Int. Ed. 56 (2017) 11851-11854.
    [10]
    M. Oschatz, M. Antonietti, Energy Environ. Sci. 11 (2018) 57-70.
    [11]
    A. Yu, G. Ma, J. Jiang, Y. Hu, M. Su, W. Long, S. Gao, H.Y. Hsu, P. Peng, F.-F. Li, Chem. Eur. J. (2021).
    [12]
    H. Wang, H. Wang, G. Liu, Q. Yan, Sci. Total Environ. 771 (2021) 145424.
    [13]
    Y. Guo, C. Tan, J. Sun, W. Li, J. Zhang, C. Zhao, Chem. Eng. J. 381 (2020).
    [14]
    S. He, G. Chen, H. Xiao, G. Shi, C. Ruan, Y. Ma, H. Dai, B. Yuan, X. Chen, X. Yang, J. Colloid Interface Sci. 582 (2021) 90-101.
    [15]
    C. Chen, M. Zhang, W. Zhang, J. Bai, Inorg. Chem. 58 (2019) 2729-2735.
    [16]
    S. Chong, T. Wang, H. Zhong, L. Xu, H. Xu, Z. Lv, M. Ji, Green Energy Environ. 5 (2020) 154-165.
    [17]
    Y. Jiang, P. Tan, S.C. Qi, X.Q. Liu, J.H. Yan, F. Fan, L.B. Sun, Angew. Chem. Int. Ed. 58 (2019) 6600-6604.
    [18]
    C. Duan, Y. Yu, J. Xiao, Y. Li, P. Yang, F. Hu, H. Xi, Green Energy Environ. 6 (2021) 33-49.
    [19]
    Y.-X. Tan, F. Wang, J. Zhang, Chem. Soc. Rev. 47 (2018) 2130-2144.
    [20]
    M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48 (2019) 2783-2828.
    [21]
    W. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, D. Yuan, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 142 (2020) 8728-8737.
    [22]
    M. Li, X. Zhang, S. Zeng, L. Bai, H. Gao, J. Deng, Q. Yang, S. Zhang, RSC Adv. 7 (2017) 6422-6431.
    [23]
    Z. Zhang, J. Li, M. Ji, Y. Liu, N. Wang, X. Zhang, S. Zhang, X. Ji, Green Chem. 23 (2021) 2362-2371.
    [24]
    Z. Yang, H. Zhang, B. Yu, Y. Zhao, Z. Ma, G. Ji, B. Han, Z. Liu, Chem. Commun. 51 (2015) 11576-11579.
    [25]
    Y. Cao, Z. Wang, S. Zhang, Y. Wang, Mater. Chem. Front. 1 (2017) 2136-2142.
    [26]
    A. Goeppert, M. Czaun, R.B. May, G.K. Prakash, G.A. Olah, S.R. Narayanan, J. Am. Chem. Soc. 133 (2011) 20164-20167.
    [27]
    A. Goeppert, H. Zhang, M. Czaun, R.B. May, G.K. Prakash, G.A. Olah, S.R. Narayanan, ChemSusChem 7 (2014) 1386-1397.
    [28]
    Y. Meng, J. Jiang, A. Aihemaiti, T. Ju, Y. Gao, J. Liu, S. Han, ACS Appl. Mater. Interfaces 11 (2019) 33781-33791.
    [29]
    G. Bai, Y. Han, P. Du, Z. Fei, X. Chen, Z. Zhang, J. Tang, M. Cui, Q. Liu, X. Qiao, New J. Chem. 43 (2019) 18345-18354.
    [30]
    L. Wang, M. Al-Aufi, C.N. Pacheco, L. Xie, R.M. Rioux, ACS Sustain. Chem. Eng. 7 (2019) 14785-14795.
    [31]
    L. Liu, S. Jin, Y. Park, K.-M. Kim, C.-H. Lee, Sep. Purif. Technol. 266 (2021).
    [32]
    T. Zhai, C. Wang, F. Gu, Z.-H. Meng, W. Liu, Y. Wang, ACS Sustain. Chem. Eng. 8 (2020) 15250-15257.
    [33]
    M. Muschi, S. Devautour-Vinot, D. Aureau, N. Heymans, S. Sene, R. Emmerich, A. Ploumistos, A. Geneste, N. Steunou, G. Patriarche, G. De Weireld, C. Serre, J. Mater. Chem. A (2021).
    [34]
    T. Ghanbari, F. Abnisa, W.M.A. Wan Daud, Sci. Total Environ. 707 (2020) 135090.
    [35]
    J. Gao, X. Qian, R.B. Lin, R. Krishna, H. Wu, W. Zhou, B. Chen, Angew. Chem. Int. Ed. 59 (2020) 4396-4400.
    [36]
    R. Zhang, X. Wang, S. Liu, L. He, C. Song, X. Jiang, T.P. Blach, ACS Appl. Mater. Interfaces 11 (2019) 36515-36524.
    [37]
    Z. Dai, L. Ansaloni, L. Deng, Green Energy Environ. 1 (2016) 102-128.
    [38]
    C. Wang, S. Okubayashi, Carbohydr. Polym. 225 (2019) 115248.
    [39]
    W. Ren, Z. Wei, X. Xia, Z. Hong, S. Li, J. Nanopart. Res. 22 (2020).
    [40]
    H.-L. Wang, C.-Y. Hsu, K.C.W. Wu, Y.-F. Lin, D.-H. Tsai, Adv. Powder Technol. 31 (2020) 104-120.
    [41]
    S. Zhang, D. Wang, Q. Pan, Q. Gui, S. Liao, Y. Wang, ACS Appl. Mater. Interfaces 9 (2017) 34497-34505.
    [42]
    D. Wang, S. Liao, S. Zhang, Y. Wang, ChemSusChem 10 (2017) 2573-2577.
    [43]
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14 (1996) 33-38.
    [44]
    T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580-592.
    [45]
    J.-P. Simonin, Chem. Eng. J. 300 (2016) 254-263.
    [46]
    C. Wang, S.K. Biswas, S. Okubayashi, ACS Appl. Nano Mater. 3 (2020) 5499-5508.
    [47]
    L.B. Hamdy, R.J. Wakeham, M. Taddei, A.R. Barron, E. Andreoli, Chem. Mater. 31 (2019) 4673-4684.
    [48]
    W. Jung, J. Park, K.S. Lee, Chem. Eng. Sci. 177 (2018) 122-131.
    [49]
    D.W. Keith, G. Holmes, D. St. Angelo, K. Heidel, Joule 2 (2018) 1573-1594.
    [50]
    R. Li, Z. Wang, X. Tao, S. Lyu, J. Jia, X.-Q. Xu, Y. Wang, Polym. Chem. 12 (2021) 3233-3239.
    [51]
    X.-Q. Xu, H. Liao, H. Liu, Y. Chu, Y. He, Y. Wang, CCS Chem. 2 (2020) 2520-2529.
    [52]
    Q. Pan, R. Li, J. Jia, Y. Wang, J. Mater. Chem. B 8 (2020) 2466-2470.
    [53]
    Y. He, S. Liao, Y. Wang, Chin. J. Chem. 39 (2021) 1435-1442
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (280) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return