Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Jing Li, Zhu Guo, Wenjie Zhang, Jing Guo, Konggang Qu, Weiwei Cai. Stable NiPt-Mo2C active site pairs enable boosted water splitting and direct methanol fuel cell. Green Energy&Environment, 2023, 8(2): 559-566. doi: 10.1016/j.gee.2021.08.005
Citation: Jing Li, Zhu Guo, Wenjie Zhang, Jing Guo, Konggang Qu, Weiwei Cai. Stable NiPt-Mo2C active site pairs enable boosted water splitting and direct methanol fuel cell. Green Energy&Environment, 2023, 8(2): 559-566. doi: 10.1016/j.gee.2021.08.005

Stable NiPt-Mo2C active site pairs enable boosted water splitting and direct methanol fuel cell

doi: 10.1016/j.gee.2021.08.005
  • Sluggish kinetics of methanol oxidation reaction (MOR) and alkaline hydrogen evolution reaction (HER) even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell (DMFC) and water electrolysis technologies. Since both of MOR and alkaline HER are related to water dissociation reaction (WDR), it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt. Mo2C and Ni species are therefore employed to engineer NiPt–Mo2C active site pairs, which can be encapsulated in carbon cages, via an in-situ self-confinement strategy. Mass activity of Pt in NiPt–Mo2C@C toward HER is boosted to 11.3 A mgpt-1, 33 times higher than that of Pt/C. Similarly, MOR catalytic activity of Pt in NiPt–Mo2C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold. By considering the great stability, NiPt–Mo2C@C exhibits great practical application potential in DMFCs and water electrolysers.

     

  • loading
  • [1]
    M. Shahriari, S. Blumsack, Appl. Energy, 195 (2017) 572-585.
    [2]
    J.A. Turner, Science, 305 (2004) 972-974.
    [3]
    L. Lei, X. Zhu, J. Xu, H. Qian, Z. Zou, H. Yang, J. Power Sources, 350 (2017) 41-48.
    [4]
    W. Cai, K. Fan, J. Li, L. Ma, G. Xu, S. Xu, L. Ma, H. Cheng, Int. J. Hydrogen Energy, 41 (2016) 17102-17111.
    [5]
    Z. Liu, S. Zhou, S. Ma, J. Li, Z. Yang, H. Cheng, W. Cai, Materials Today Physics, 17 (2021) 100338.
    [6]
    X. Cui, P. Xiao, J. Wang, M. Zhou, W. Guo, Y. Yang, Y. He, Z. Wang, Y. Yang, Y. Zhang, Z. Lin, Angew Chem Int Ed Engl, 56 (2017) 4488-4493.
    [7]
    W. Chen, J. Xue, Y. Bao, L. Feng, Chem. Eng. J., 381 (2020) 122752.
    [8]
    L.Y. Gong, Z.Y. Yang, K. Li, W. Xing, C.P. Liu, J.J. Ge, J. Energy Chem., 27 (2018) 1618-1628.
    [9]
    L. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang, S. Dong, J. Am. Chem. Soc., 140 (2018) 1142-1147.
    [10]
    X. Wang, M. Xie, F. Lyu, Y.-M. Yiu, Z. Wang, J. Chen, L.-Y. Chang, Y. Xia, Q. Zhong, M. Chu, H. Yang, T. Cheng, T.-K. Sham, Q. Zhang, Nano Lett., 20 (2020) 7751-7759.
    [11]
    Y. Wang, A. Vogel, M. Sachs, R.S. Sprick, L. Wilbraham, S.J.A. Moniz, R. Godin, M.A. Zwijnenburg, J.R. Durrant, A.I. Cooper, J. Tang, Nat. Energy, 4 (2019) 746-760.
    [12]
    M.Z. Rahman, M.G. Kibria, C.B. Mullins, Chem. Soc. Rev., 49 (2020) 1887-1931.
    [13]
    J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.-Y. Wong, Chem. Rev., 120 (2020) 851-918.
    [14]
    J.N. Tiwari, S. Sultan, C.W. Myung, T. Yoon, N. Li, M. Ha, A.M. Harzandi, H.J. Park, D.Y. Kim, S.S. Chandrasekaran, W.G. Lee, V. Vij, H. Kang, T.J. Shin, H.S. Shin, G. Lee, Z. Lee, K.S. Kim, Nat. Energy, 3 (2018) 773-782.
    [15]
    F. Luo, L. Guo, Y. Xie, J. Xu, W. Cai, K. Qu, Z. Yang, J. Mater. Chem. A, 8 (2020) 12378-12384.
    [16]
    J. Xiong, J. Li, J. Shi, X. Zhang, W. Cai, Z. Yang, H. Cheng, Appl. Catal., B, 243 (2019) 614-620.
    [17]
    Y. Wang, L. Chen, X. Yu, Y. Wang, G. Zheng, Adv. Energy Mater., 7 (2017) 1601390.
    [18]
    Z. Liu, S. Zhou, S. Xue, Z. Guo, J. Li, K. Qu, W. Cai, Chem. Eng. J., 421 (2021) 127807.
    [19]
    Z. Liu, J. Li, S. Xue, S. Zhou, K. Qu, Y. Li, W. Cai, J. Energy Chem., 47 (2020) 317-323.
    [20]
    M. Lao, K. Rui, G. Zhao, P. Cui, X. Zheng, S.X. Dou, W. Sun, Angew. Chem. Int. Ed., 58 (2019) 5432-5437.
    [21]
    Y. Zheng, Y. Jiao, A. Vasileff, S.-Z. Qiao, Angew. Chem. Int. Ed., 57 (2018) 7568-7579.
    [22]
    S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic, Y. Roman-Leshkov, Science, 352 (2016) 974-978.
    [23]
    W. Zhang, S. Xue, Z. Guo, J. Li, S. Xiao, S. Zhou, Z. Liu, Z. Yang, W. Cai, Nano Select, 2 (2021) 600-607.
    [24]
    C. Panda, P.W. Menezes, S. Yao, J. Schmidt, C. Walter, J.N. Hausmann, M. Driess, J. Am. Chem. Soc., 141 (2019) 13306-13310.
    [25]
    X. Zheng, Y. Cao, X. Han, H. Liu, J. Wang, Z. Zhang, X. Wu, C. Zhong, W. Hu, Y. Deng, Science China Materials, 62 (2019) 1096-1104.
    [26]
    Y. Pei, L. Huang, L. Han, H. Zhang, L. Dong, Q. Jia, S. Zhang, Green Energy & Environment, (2020).
    [27]
    Z. Zhuang, S.A. Giles, J. Zheng, G.R. Jenness, S. Caratzoulas, D.G. Vlachos, Y. Yan, Nat Commun, 7 (2016) 10141.
    [28]
    X. Shu, S. Chen, S. Chen, W. Pan, J. Zhang, Carbon, 157 (2020) 234-243.
    [29]
    C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang, T. Zhang, X. Zhuang, M. Chen, B. Yang, L. Lei, C. Yuan, M. Qiu, X. Feng, Energy Environ. Sci., 12 (2019) 149-156.
    [30]
    F. Wu, K. Eid, A.M. Abdullah, W. Niu, C. Wang, Y. Lan, A.A. Elzatahry, G. Xu, ACS Appl. Mat. Interfaces, 12 (2020) 31309-31318.
    [31]
    M.T. Bender, Y.C. Lam, S. Hammes-Schiffer, K.-S. Choi, J. Am. Chem. Soc., 142 (2020) 21538-21547.
    [32]
    J. Shi, F.M.D. Kazim, S. Xue, J. Li, Z. Yang, W. Cai, Chem. Commun., 57 (2021) 903-906.
    [33]
    J. Shi, X. Zhang, Y. Lei, J. Li, Z. Yang, K. Qu, W. Cai, Chem. Commun., 56 (2020) 12214-12217.
    [34]
    C. Tang, Y. Jiao, B. Shi, J.-N. Liu, Z. Xie, X. Chen, Q. Zhang, S.-Z. Qiao, Angew. Chem. Int. Ed., 59 (2020) 9171-9176.
    [35]
    F. Yang, P. Han, N. Yao, G. Cheng, S. Chen, W. Luo, Chem. Sci., (2020).
    [36]
    B. Tang, X. Yang, Z. Kang, L. Feng, Appl. Catal., B, 278 (2020) 119281.
    [37]
    D.S. Baek, G.Y. Jung, B. Seo, J.C. Kim, H.W. Lee, T.J. Shin, H.Y. Jeong, S.K. Kwak, S.H. Joo, Adv. Funct. Mater., 29 (2019) 1901217.
    [38]
    Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B.-a. Lu, Z. Xie, L. Zheng, Nat. Commun., 8 (2017) 1-7.
    [39]
    S.W. Jang, S. Dutta, A. Kumar, Y.-R. Hong, H. Kang, S. Lee, S. Ryu, W. Choi, I.S. Lee, ACS Nano, (2020).
    [40]
    H. Chen, G. Wang, T. Gao, Y. Chen, H. Liao, X. Guo, H. Li, R. Liu, M. Dou, S. Nan, J. Phys. Chem. C, 124 (2020) 5036-5045.
    [41]
    X.K. Wan, H.B. Wu, B.Y. Guan, D. Luan, X.W. Lou, Adv. Mater., 32 (2020) 1901349.
    [42]
    X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong, W. Hu, Adv. Energy Mater., 8 (2018) 1800935.
    [43]
    Y. Wang, C. Wang, L. Jin, H. Shang, F. Ren, M. Yuan, Y. Du, Colloids Surf., A, (2020) 125313.
    [44]
    R. Mu, Q. Fu, H. Xu, H. Zhang, Y. Huang, Z. Jiang, S. Zhang, D. Tan, X. Bao, J. Am. Chem. Soc., 133 (2011) 1978-1986.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (184) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return