Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Yan Zhang, Yixiao Wu, Liang Wan, Wenfeng Yang, Huijun Ding, Chongyang Lu, Weihao Zhang, Zipeng Xing. Double Z-Scheme g-C3N4/BiOI/CdS heterojunction with I3-/I- pairs for enhanced visible light photocatalytic performance. Green Energy&Environment, 2022, 7(6): 1377-1389. doi: 10.1016/j.gee.2021.08.004
Citation: Yan Zhang, Yixiao Wu, Liang Wan, Wenfeng Yang, Huijun Ding, Chongyang Lu, Weihao Zhang, Zipeng Xing. Double Z-Scheme g-C3N4/BiOI/CdS heterojunction with I3-/I- pairs for enhanced visible light photocatalytic performance. Green Energy&Environment, 2022, 7(6): 1377-1389. doi: 10.1016/j.gee.2021.08.004

Double Z-Scheme g-C3N4/BiOI/CdS heterojunction with I3-/I- pairs for enhanced visible light photocatalytic performance

doi: 10.1016/j.gee.2021.08.004
  • The g-C3N4/BiOI/CdS double Z-scheme heterojunction photocatalyst with I3-/I- redox pairs is prepared using simple calcination, solvothermal, and solution chemical deposition methods. The photocatalyst comprised mesoporous, thin g-C3N4 nanosheets loaded on flower-like microspheres of BiOI with CdS quantum dots. The g-C3N4/BiOI/CdS double Z-scheme heterojunction has abundant active sites and in situ redox I3-/I- mediators and shows quantum size effects, which are all conducive to enhancing the separation of photoinduced charges and increasing the photocatalytic degradation efficiency for bisphenol A, a model pollutant. Specifically, the heterojunction photocatalyst achieves a photocatalytic degradation efficiency for bisphenol A of 98.62% in 120 min and photocatalytic hydrogen production of 863.44 μmol h-1g-1 on exposure to visible light. The excellent visible-light photocatalytic performance is as a result of the Z-scheme heterojunction, which extends absorption to the visible light region, as well as the I3-/I- pairs, which accelerate photoinduced charge carrier transfer and separation, thus dramatically boosting the photocatalytic performance. In addition, the key role of the charge transfer across the indirect Z-scheme heterojunction has been elucidated and the transfer mechanism is confirmed based on the detection of intermediate I3- ions. Thus, this study provides guidelines for the design of indirect Z-scheme heterojunction photocatalysts.

     

  • loading
  • [1]
    P. Tomkins, T.E. Müller, ChemCatChem 10 (2018) 1438–1445.
    [2]
    R.X. Qin, L.Y. Zhou, P.X. Liu, Y. Gong, K.L. Liu, C.F. Xu, Y. Zhao, L. Gu, G. Fu, N.F. Zheng, Nat. Catal. 3 (2020) 703–709.
    [3]
    W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159–7329.
    [4]
    Y.T. Gong, P.F. Zhang, X. Xu, Y. Li, H.R. Li, Y. Wang, J. Catal. 297 (2013) 272–280.
    [5]
    D. Zhang, X.H. Han, T. Dong, X.W. Guo, C.S. Song, Z.K. Zhao, J. Catal. 366 (2018) 237–244.
    [6]
    N. Debkumar, S. Samarjeet, C. Meenakshi, M. Kaushik, Appl. Catal. A 523 (2016) 31–38.
    [7]
    W.G. Liu, L.L. Zhang, W.S. Yan, X.Y. Liu, X.F. Yang, S. Miao, W.T. Wang, A.Q. Wang, T. Zhang, Chem. Sci. 7 (2016) 5758–5764.
    [8]
    H.H. Wu, H.B. Li, X.F. Zhao, Q.F. Liu, J. Wang, J.P. Xiao, S.H. Xie, R. Si, F. Yang, S. Miao, X.G. Guo, G.X. Wang, X.H. Bao, Energy Environ. Sci. 9 (2016) 3736–3745.
    [9]
    P.Q. Yin, T. Yao, Y. Wu, L.R. Zheng, Y. Lin, W. Liu, H.X. Ju, J.F. Zhu, X. Hong, Z.X. Deng, G. Zhou, S.Q. Wei, Y.D. Li, Angew. Chem. Int. Ed. 55 (2016) 10800–10805.
    [10]
    X.J. Li, W.T. Bi, M.L. Chen, Y.X. Sun, H.X. Ju, W.S. Yan, J.F. Zhu, X.J. Wu, W.S. Chu, C.Z. Wu, Y. Xie, J. Am. Chem. Soc. 139 (2017) 14889–14892.
    [11]
    X. Wang, S. Qiu, J. Feng, Y. Tong, F. Zhou, Q. Li, L. Song, S. Chen, K.- H. Wu, P. Su, S. Ye, F. Hou, S.X. Dou, H.K. Liu, G.Q. Lu, C. Sun, J. Liu, J. Liang, Adv. Mater. 32 (2020) 2004382.
    [12]
    P. Xiao, Y.X. Zhao, T. Wang, Y.Y. Zhan, H.H. Wang, J.L. Li, A. Thomas, J.J. Zhu, Chem. Eur. J. 20 (2014) 2872–2878.
    [13]
    Y. Zheng, Y. Jiao, Y.H. Zhu, Q.R. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S.Z. Qiao, J. Am. Chem. Soc. 139 (2017) 3336–3339.
    [14]
    X.W. Lan, Y.M. Li, C. Du, T.T. She, Q. Li, G.Y. Bai, Chem. Eur. J. 25 (2019) 8560–8569.
    [15]
    G.C. Lei, W.T. Zhao, L.J. Shen, S.J. Liang, C.T. Au, L.L. Jiang, Appl. Catal. B Environ. 267 (2020) 118663.
    [16]
    Y.T. Gong, M.M. Li, H.R. Li, Y. Wang, Green Chem. 17 (2015) 715–736.
    [17]
    S.F.An,G.H.Zhang,T.W.Wang,W.N.Zhang,K.Y.Li,C.S.Song,J.T.Miller, S. Miao, J.H. Wang, X.W. Guo, ACS Nano 12 (2018) 9441–9450.
    [18]
    L. Tang, X.G. Meng, D.H. Deng, X.H. Bao, Adv. Mater. 31 (2019) 1901996.
    [19]
    Z.N. Hu, J.J. Zhou, Y.J. Ai, L. Liu, L. Qi, R.H. Jiang, H.J. Bao, J.T. Wang, J.S. Hu, H.B. Sun, Q.L. Liang, J. Catal. 368 (2018) 20–30.
    [20]
    Y. Wang, J. Yao, H.R. Li, D.S. Su, M. Antonietti, J. Am. Chem. Soc. 133 (2011) 2362–2365.
    [21]
    X. Jin, V.V. Balasubramanian, S.T. Selvan, D.P. Sawant, M.A. Chari, G.Q. Lu, A. Vinu, Angew. Chem. Int. Ed. 48 (2009) 7884–7887.
    [22]
    G. Vile, D. Albani, M. Nachtegaal, Z.P. Chen, D. Dontsova, M. Antonietti, N. Lopez, J.P. Ramirez, Angew. Chem. Int. Ed. 54 (2015) 11265–11269.
    [23]
    J.Y. Cao, F.G. Han, L.G. Wang, X.Y. Huang, Y. Cao, P. He, H.H. Yang, J.Q. Chen, H.Q. Li, RSC Adv. 10 (2020) 16515–16525.
    [24]
    J.D. Xiao, J. Rabeah, J. Yang, Y.B. Xie, H.B. Cao, A. Brückner, ACS Catal. 7 (2017) 6198–6206.
    [25]
    X.B. Li, G. Hartley, A.J. Ward, P.A. Young, A.F. Masters, T. Maschmeyer, J. Phys. Chem. C 119 (2015) 14938–14946.
    [26]
    X.P. Dong, F.X. Cheng, J. Mater. Chem. A 3 (2015) 23642–23652.
    [27]
    P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763–4770.
    [28]
    Y.N. Li, M.Q. Wang, S.J. Bao, S.Y. Lu, M.W. Xu, D.B. Long, S.H. Pu, Ceram. Int. 42 (2016) 18521–18528.
    [29]
    X.J. Cui, A.E. Surkus, K. Junge, C. Topf, J. Radnik, C. Kreyenschulte, M. Beller, Nat. Commun. 7 (2016) 11326.
    [30]
    S.X. Min, G.X. Lu, J. Phys. Chem. C 116 (2012) 19644–19652.
    [31]
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguezreinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87 (2015) 1051–1069.
    [32]
    K.N. Ahmad, S.A. Anuar, W.N.R.W. Isahak, M.I. Rosli, M.A. Yarmo, ACS Appl. Mater. Interfaces 12 (2020) 7102–7113.
    [33]
    B.V. Lotsch, M. Doblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Chem. Eur. J. 13 (2007) 4969–4980.
    [34]
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, J. Mater. Chem. 18 (2008) 4893–4908.
    [35]
    J.D. Hong, Y.S. Wang, Y.B. Wang, W. Zhang, R. Xu, ChemSusChem 6 (2013) 2263–2268.
    [36]
    H.Y. Zhang, A.C. Yu, J. Phys. Chem. C 118 (2014) 11628–11635.
    [37]
    G.M. Peng, L.D. Xing, J. Barrio, M. Volokh, M. Shalom, Angew. Chem. Int. Ed. 57 (2018) 1186–1192.
    [38]
    W. Chen, Y.X. Hua, Y. Wang, T. Huang, T.Y. Liu, X.H. Liu, J. Catal. 349 (2017) 8–18.
    [39]
    H.M. Liu, P. Wu, H.T. Li, Z.B. Chen, L.Z. Wang, X. Zeng, Y.X. Zhu, Y.J. Jiang, X.Z. Liao, B.S. Haynes, J.H. Ye, C. Stampfl, J. Huang, Appl. Catal., B 259 (2019) 118026.
    [40]
    M.J. Munoz-Batista, O. Fontelles-Carceller, A. Kubacka, M. FernándezGarcía, Appl. Catal., B 203 (2017) 663–672.
    [41]
    Y.F. Li, L. Fang, R.X. Jin, Y. Yang, F. Xu, Y. Xing, S.Y. Song, Nanoscale 7 (2015) 758–764.
    [42]
    C. Chang, F. Yu, M. Hu, C.Y. Wang, G.Q. Shan, L.Y. Zhu, Appl. Catal., B 142–143 (2013) 553–560.
    [43]
    H.L. Fei, J.C. Dong, M.J. Arellano-Jimenez, G.L. Ye, D.D. Kim, E.L. Samuel, Z.W. Peng, Z. Zhu, F. Qin, J.M. Bao, M.J. Yacaman, P.M. Ajayan, D.L. Chen, J.M. Tour, Nat. Commun. 6 (2015) 8668.
    [44]
    R. Zhao, Z.B. Liang, S. Gao, C. Yang, B.J. Zhu, J.L. Zhao, C. Qu, R.Q. Zou, Q. Xu, Angew. Chem. Int. Ed. 58 (2019) 1975–1979.
    [45]
    M.H. Tang, J. Deng, M.M. Li, X.F. Li, H.R. Li, Z.R. Chen, Y. Wang, Green Chem. 18 (2016) 6082–6090.
    [46]
    T.J. Li, H.F. Lin, X.P. Ouyang, X.Q. Qiu, Z.C. Wan, ACS Catal. 9 (2019) 5828–5836.
    [47]
    A.P. Dementjev, A. Graaf, M.C.M. v d Sanden, K.I. Maslakov, A.V. Naumkin, A.A. Serov, Diam. Relat. Mater. 9 (2000) 1904–1907.
    [48]
    V. Mazzieria, F. Coloma-Pascual, A. Arcoya, P.C. L'Argentie‘re, N.S. Fígoli, Appl. Surf. Sci. 210 (2003) 222–230.
    [49]
    A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, Y. Bando, Adv. Mater. 17 (2005) 1648–1652.
    [50]
    J.C. Sánchez-López, C. Donnet, F. Lefèbvre, C. Fernández-Ramos, A.J. Fernández, J. Appl. Phys. 90 (2001) 675–681.
    [51]
    J.J. Zhu, P. Xiao, H.L. Li, S.A. Carabineiro, ACS Appl. Mater. Interfaces 6 (2014) 16449–16465.
    [52]
    R. Pietrzak, H. Wachowska, P. Nowicki, Energy Fuels 20 (2006) 1275–1280.
    [53]
    T. Grzybek, J. Klinik, B. Samojeden, V. Suprun, H. Papp, Catal. Today 137 (2008) 228–234.
    [54]
    A.M. Lawal, A. Hart, H. Daly, C. Hardacre, J. Wood, Energy Fuels 33 (2019) 5551–5560.
    [55]
    A.A.S. Nair, R. Sundara, J. Phys. Chem. C 120 (2016) 9612–9618.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (250) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return