Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Yi Fu, Youming Ni, Wenhao Cui, Xudong Fang, Zhiyang Chen, Zhaopeng Liu, Wenliang Zhu, Zhongmin Liu. Insights into the size effect of ZnCr2O4 spinel oxide in composite catalysts for conversion of syngas to aromatics. Green Energy&Environment, 2023, 8(2): 530-537. doi: 10.1016/j.gee.2021.07.003
Citation: Yi Fu, Youming Ni, Wenhao Cui, Xudong Fang, Zhiyang Chen, Zhaopeng Liu, Wenliang Zhu, Zhongmin Liu. Insights into the size effect of ZnCr2O4 spinel oxide in composite catalysts for conversion of syngas to aromatics. Green Energy&Environment, 2023, 8(2): 530-537. doi: 10.1016/j.gee.2021.07.003

Insights into the size effect of ZnCr2O4 spinel oxide in composite catalysts for conversion of syngas to aromatics

doi: 10.1016/j.gee.2021.07.003
  • Direct conversion of syngas to aromatics (STA) over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production. However, the structural effect of the oxide component in composite catalysts is still ambiguous. Herein, we investigate the size effect by selecting ZnCr2O4 spinel, as a probe oxide, mixing with H-ZSM-5 zeolite as a composite catalyst for STA reaction. The CO conversion, aromatics selectivity and space-time yield (STY) of aromatics are all significantly improved with the crystal size of ZnCr2O4 oxide decreases, which can mainly attribute to the higher oxygen vacancy concentration and thus the rapid generation of more C1 oxygenated intermediate species. Based on the understanding of the size–performance relationship, ZnCr2O4-400 with a smaller size mixing with H-ZSM-5 can achieve 32.6% CO conversion with 76% aromatics selectivity. The STY of aromatics reaches as high as 4.79 mmol gcat-1 h-1, which outperforms the previously reported some typical catalysts. This study elucidates the importance of regulating the size of oxide to design more efficient oxide-zeolite composite catalysts for conversion of syngas to value-added chemicals.

     

  • • ZnCr2O4 was selected as a probe oxide to elucidate the size-performance relationship for syngas to aromatics reaction. • ZnCr2O4 oxide with a smaller size is conducive to promote the catalytic performance. • ZnCr2O4-400 with a smaller size mixing with H-ZSM-5 can achieve 32.6% CO conversion with 76% aromatics selectivity. • The intrinsic reason for size effect is related to oxygen vacancy and the formation of C1 intermediates. • The STY of aromatics (4.79 mmol gcat−1 h−1) exceeds the previously reported some typical catalysts.
  • loading
  • [1]
    W. Zhou, K. Cheng, J. Kang, C. Zhou, V. Subramanian, Q. Zhang, Y. Wang, Chem. Soc. Rev. 48 (2019) 3193-3228.
    [2]
    X.L. Yang, X. Su, D. Chen, T. Zhang, Y.Q. Huang, Chin. J. Catal. 41 (2020) 561-573.
    [3]
    A.M. Niziolek, O. Onel, Y.A. Guzman, C.A. Floudas, Energy Fuels 30 (2016) 4970-4998.
    [4]
    Y.M. Jia, J.W. Wang, K. Zhang, S.B. Liu, G.L. Chen, Y.F. Yang, C.M. Ding, P. Liu, Catal. Sci. Technol. 7 (2017) 1776-1791.
    [5]
    S. Kasipandi, J.W. Bae, Adv. Mater. 31 (2019) 1803390.
    [6]
    R.A. Friedel, R.B. Anderson, J. Am. Chem. Soc. 72 (1950) 1212-1215.
    [7]
    M.E. Dry, J. Chem. Technol. Biotechnol. 77 (2002) 43-50.
    [8]
    Q.G. Yan, Y.W. Lu, C.X. Wan, J. Han, J. Rodriguez, J.J. Yin, F. Yu, Energy Fuels 28 (2014) 2027-2034.
    [9]
    N. Guan, Y. Liu, M. Zhang, Catal. Today 30 (1996) 207-213.
    [10]
    B. Zhao, P. Zhai, P.F. Wang, J.Q. Li, T. Li, M. Peng, M. Zhao, G. Hu, Y. Yang, Y.W. Li, Q.W. Zhang, W.B. Fan, D. Ma, Chem 3 (2017) 323-333.
    [11]
    Y. Xu, J. Liu, J. Wang, G. Ma, J. Lin, Y. Yang, Y. Li, C. Zhang, M. Ding, ACS Catal. 9 (2019) 5147-5156.
    [12]
    K. Cheng, W. Zhou, J.C. Kang, S. He, S.L. Shi, Q.H. Zhang, Y. Pan, W. Wen, Y. Wang, Chem 3 (2017) 334-347.
    [13]
    J.H. Yang, X.L. Pan, F. Jiao, J. Li, X.H. Bao, Chem. Commun. 53 (2017) 11146-11149.
    [14]
    J.H. Yang, K. Gong, D.Y. Miao, F. Jiao, X.L. Pan, X.J. Meng, F.S. Xiao, X.H. Bao, J. Energy Chem. 35 (2019) 44-48.
    [15]
    X.L. Yang, T. Sun, J.G. Ma, X. Su, R.F. Wang, Y.R. Zhang, H.M. Duan, Y.Q. Huang, T. Zhang, J. Energy Chem. 35 (2019) 60-65.
    [16]
    Z. Huang, S. Wang, F. Qin, L. Huang, Y.H. Yue, W.M. Hua, M.H. Qiao, H.Y. He, W. Shen, H.L. Xu, ChemCatChem 10 (2018) 4519-4524.
    [17]
    Y. Fu, Y.M. Ni, W.L. Zhu, Z.M. Liu, J. Catal. 383 (2020) 97-102.
    [18]
    D.Y. Miao, Y. Ding, T. Yu, J. Li, X.L. Pan, X.H. Bao, ACS Catal. 10 (2020) 7389-7397.
    [19]
    M.T. Arslan, B.A. Qureshi, S.Z.A. Gilani, D.L. Cai, Y.H. Ma, M. Usman, X. Chen, Y. Wang, F. Wei, ACS Catal. 9 (2019) 2203-2212.
    [20]
    C. Liu, J.J. Su, S. Liu, H.B. Zhou, X.H. Yuan, Y.C. Ye, Y. Wang, W.Q. Jiao, L. Zhang, Y.Q. Lu, Y.D. Wang, H.Y. He, Z.K. Xie, ACS Catal. 10 (2020) 15227-15237.
    [21]
    C. Zhou, J.Q. Shi, W. Zhou, K. Cheng, Q.H. Zhang, J.C. Kang, Y. Wang, ACS Catal. 10 (2020) 302-310.
    [22]
    X.L. Liu, M.H. Wang, C. Zhou, W. Zhou, K. Cheng, J.C. Kang, Q.H. Zhang, W.P. Deng, Y. Wang, Chem. Commun. 54 (2018) 140-143.
    [23]
    Y.M. Ni, Z.Y. Chen, Y. Fu, Y. Liu, W.L. Zhu, Z.M. Liu, Nat. Commun. 9 (2018) 3457.
    [24]
    L.Y. Wang, X.F. Gao, Y.X. Bai, M.H. Tan, K. Sun, T. Zhang, Y.Q. Wu, J.X. Pan, H.J. Xie, Y.S. Tan, Fuel 253 (2019) 1570-1577.
    [25]
    D. Xu, X.L. Hong, G.L. Liu, J. Catal. 393 (2021) 207-214.
    [26]
    S.K. Pardeshi, A.B. Patil, J. Mol. Catal. A-Chem. 308 (2009) 32-40.
    [27]
    W. Ao, J. Li, H. Yang, X. Zeng, X. Ma, Powder Technol. 168 (2006) 148-151.
    [28]
    F. Jiao, J.J. Li, X.L. Pan, J.P. Xiao, H.B. Li, H. Ma, M.M. Wei, Y. Pan, Z.Y. Zhou, M.R. Li, S. Miao, J. Li, Y.F. Zhu, D. Xiao, T. He, J.H. Yang, F. Qi, Q. Fu, X.H. Bao, Science 351 (2016) 1065-1068.
    [29]
    Y.F. Zhu, X.L. Pan, F. Jiao, J. Li, J.H. Yang, M.Z. Ding, Y. Han, Z. Liu, X.H. Bao, ACS Catal. 7 (2017) 2800-2804.
    [30]
    C. Yang, J. Wang, H.L. Fan, S.G. Ju, J. Mi, C. Huo, Fuel 215 (2018) 695-703.
    [31]
    F.C. Lei, Y.F. Sun, K.T. Liu, S. Gao, L. Liang, B.C. Pan, Y. Xie, J. Am. Chem. Soc. 136 (2014) 6826-6829.
    [32]
    Z.L. Wang, X. Mao, P. Chen, M. Xiao, S.A. Monny, S.C. Wang, M. Konarova, A.J. Du, L.Z. Wang, Angew. Chem., Int. Ed. 58 (2019) 1030-1034.
    [33]
    E. Kadossov, U. Burghaus, J. Phys. Chem. C 112 (2008) 7390-7400.
    [34]
    S. Azad, M.H. Engelhard, L.Q. Wang, J. Phys. Chem. B 109 (2005) 10327-10331.
    [35]
    W.H. Li, X.W. Nie, X. Jiang, A.F. Zhang, F.S. Ding, M. Liu, Z.M. Liu, X.W. Guo, C.S. Song, Appl. Catal. B:Environ. 220 (2018) 397-408.
    [36]
    J. Liu, Y. Liu, Y.M. Ni, H.C. Liu, W.L. Zhu, Z.M. Liu, Catal. Sci. Technol. 10 (2020) 1739-1746.
    [37]
    X.L. Liu, W. Zhou, Y.D. Yang, K. Cheng, J.C. Kang, L. Zhang, G.Q. Zhang, X.J. Min, Q.H. Zhang, Y. Wang, Chem. Sci. 9 (2018) 4708-4718.
    [38]
    M.T. Arslan, B. Ali, S.Z.A. Gilani, Y.L. Hou, Q. Wang, D.L. Cai, Y. Wang, F. Wei, ACS Catal. 10 (2020) 2477-2488.
    [39]
    Z.Y. Chen, Y.M. Ni, F. L. Wen, Z. Q. Zhou, W.L. Zhu, Z.M. Liu, Chin. J. Catal. 42 (2021) 835-843.
    [40]
    S. Wang, Z. Huang, Y.J. Luo, J.H. Wang, Y. Fang, W.M. Hua, Y.H. Yue, H.L. Xu, W. Shen, Catal. Sci. Technol., 10 (2020) 6562-6572.
    [41]
    J.G. Liu, Y.R. He, L.L. Yan, K. Li, C.H. Zhang, H.W. Xiang, X.D. Wen, Y.W. Li, Catal. Sci. Technol., 9 (2019) 2982-2992.
    [42]
    S.Z.A. Gilani, L. Lu, M.T. Arslan, B. Ali, Q. Wang, F. Wei, Catal. Sci. Technol., 10 (2020) 3366-3375.
    [43]
    C. Liu, S. Liu, H.B. Zhou, J.J. Su, W.Q. Jiao, L. Zhang, Y.D. Wang, H.Y. He, Z.K. Xie, Appl. Catal. A: Gen. 585 (2019) 117206.
    [44]
    Y. Wang, W.Z. Gao, K.Z. Wang, X.H. Gao, B.Z. Zhang, H. Zhao, Q.X. Ma, P.P. Zhang, G.H. Yang, M.B. Wu, N. Tsubaki, Chem. Sci. 12(2021) 7786–7792.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return