Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Xiaowen Guo, Haihong Wu, Peng Wu, Mingyuan He, Yejun Guan. Efficient synthesis of bioetheric fuel additive by combining the reductive and direct etherification of furfural in one-pot over Pd nanoparticles deposited on zeolites. Green Energy&Environment, 2023, 8(2): 519-529. doi: 10.1016/j.gee.2021.07.001
Citation: Xiaowen Guo, Haihong Wu, Peng Wu, Mingyuan He, Yejun Guan. Efficient synthesis of bioetheric fuel additive by combining the reductive and direct etherification of furfural in one-pot over Pd nanoparticles deposited on zeolites. Green Energy&Environment, 2023, 8(2): 519-529. doi: 10.1016/j.gee.2021.07.001

Efficient synthesis of bioetheric fuel additive by combining the reductive and direct etherification of furfural in one-pot over Pd nanoparticles deposited on zeolites

doi: 10.1016/j.gee.2021.07.001
  • Furfuryl ethers have been considered to be a promising fuel additive. One step reduction etherification of furfural over supported Pd catalysts provides a facile way for the preparation of furfuryl ether. However, the preparation of a reusable Pd catalyst for reductive etherification remains to be a great challenge. In this study, a series of SiO2 supported Pd catalysts with particle size ranging from 2.2 nm to 28 nm were prepared. Their textural properties and catalytic performance in furfural reductive etherification have been systematically studied. The results herein shed light on the particle size effect on the competition between hydrogenation/hydrogenolysis of C=O in furfural over Pd surface. We found out that Pd nanoparticles larger than 3 nm are preferred for one step reductive etherification. Based on this finding, we prepared a Pd/ZSM-5 bifunctional catalyst comprising Pd nanoparticles larger than 3 nm and decreased acidity in presence of amino organosilane, which served as a bifunctional catalyst succeeding in one-pot synthesis of ether via reductive-etherification and direct-etherification. This strategy showed significant advantage in efficiently converting furfuryl acohol, a major side-product, into ether, while suppressing the undesired side-reactions.

     

  • • Pd particle size affects the hydrogenation and etherification pathways. • Catalysts with spatially distributed Pd nanoparticles and acid sites were prepared. • Total acidity affects the overall yield of furfural etherification.
  • loading
  • [1]
    T. A. Natsir, S. Shimazu, Fuel. Process. Technol. 200 (2020) 106308.
    [2]
    M. A. Ershov, E. V. Grigoreva, A. I. Guseva, N. Ya. Vinogradova, D. A. Potanin, V. S. Dorokhov, P. A. Nikulshin, K. A. Ovchinnikov, Russ. J. Appl. Chem. 90 (2017) 1402-1411.
    [3]
    J. E. Rorrer, A. T. Bell, F. D. Toste, ChemSusChem 12 (2019) 2835-2858.
    [4]
    K. Kohse-Hoinghaus, P. Osswald, T. A. Cool, T. Kasper, N. Hansen, F. Qi, C. K. Westbrook, Angew. Chem. Int. Ed. 49 (2009) 3572-3597.
    [5]
    R. Bringue, E. Ramirez, M. Iborra, J. Tejero, F. Cunill, J. Catal. 304 (2013) 7-21.
    [6]
    A. L. Maximov, A. I. Nekhaev, D. N. Ramazanov, Pet. Chem. 55 (2015) 1-21.
    [7]
    R. J. J. Nel, A. D. Klerk, Ind. Eng. Chem. Res. 48 (2009) 5230-5238.
    [8]
    F. Zaccheria, N. Scotti, N. Ravasio, Catalysts 9 (2019) 172.
    [9]
    G. J. Hatchings, C. P. Nicolaides, M. S. Scurrell, Catal. Today 15 (1992) 23-49.
    [10]
    M. P. Haynes, H. R. Buckley, M. L. Higgins, R. A. Pieringer, Antimicrob Agents Chemother. 38 (1994) 1523-1529.
    [11]
    M. P. Haynes, H. R. Buckley, M. L. Higgins, R. A. Pieringer, Antimicrob Agents Chemother. 38 (1994) 1523-1529.
    [12]
    G. D. Yadav, P. A. Chandan, N. Gopalaswami, Clean Techn Environ Policy 14 (2012) 85-95.
    [13]
    J. P. Lange, E. vanderHeide, J. vanBuijtenen, R. Price, ChemSusChem 5 (2012) 150-166.
    [14]
    Anthonia, E. Eseyin, Philip, H. Steele, Int. J. Adv. Chem. 3 (2015) 42-47.
    [15]
    L. Hu, Y. Jiang, X. Wang, A. He, J. Xu, Z. Wu, Biomass Conv. Bioref. (2020).
    [16]
    R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sadaba, M. Lopez Granados, Energy Environ. Sci. 9 (2016) 1144-1189.
    [17]
    A. O. Iroegbu, S. P. Hlangothi, Chemistry Africa 2 (2019) 223-239.
    [18]
    N. Scotti, F. Zaccheria, C. Bisio, C. Vittoni, N. Ravasio, ChemistrySelect 3 (2018) 8344-8348.
    [19]
    A. Corma, M. Renz, Angew. Chem. Int. Ed. 46 (2007) 298-300.
    [20]
    M. Paniagua, J. A. Melero, J. Iglesias, G. Morales, B. Hernandez, C. Lopez-Aguado, Appl. Catal. A: Gen. 537 (2017) 74-82.
    [21]
    M. J. Climent, A. Corma, S. Iborra, Chem. Rev. 111 (2011) 1072-1133.
    [22]
    M. J. Verhoef, E. J. Creyghton, J. A. Peters, Chem. Commun. 29 (1998) 1989-1990.
    [23]
    Y. Long, Y. Wang, H. Wu, T. Xue, P. Wu, Y. Guan, RSC Adv 9 (2019) 25345-25350.
    [24]
    R. Bringue, M. Iborra, J. Tejero, J. F. Izquierdo, F. Cunill, C. Fite, V. J. Cruz, J. Catal. 244 (2006) 33-42.
    [25]
    E. Medina, R. Bringue, J. Tejero, M. Iborra, C. Fite, Appl. Catal. A: Gen. 374 (2010) 41-47.
    [26]
    R. Bringue, E. Ramirez, M. Iborra, J. Tejero, F. Cunill, Chem. Eng. J. 246 (2014) 71-78.
    [27]
    D. Padovan, A. Al-Nayili, C. Hammond, Green Chem. 19 (2017) 2846-2854.
    [28]
    G. M. G. Maldonado, R. S. Assary, J. Dumesic, L. A. Curtiss, Energy Environ. Sci. 5 (2012) 6981-6989.
    [29]
    D. Wu, W. Y. Hernandez, S. Zhang, E. I. Vovk, X. Zhou, Y. Yang, A. Y. Khodakov, V. V. Ordomsky, ACS Catal. 9 (2019) 2940-2948.
    [30]
    G. R. Hafenstine, N. A. Huq, D. R. Conklin, M. R. Wiatrowski, X. Huo, Q. Guo, K, A. Unocic, D. R. Vardon, Green Chem. 22 (2020) 4463-4472.
    [31]
    N. A. Huq, X. Huo, G. R. Hafenstine, S. M. Tifft, D. R. Vardon, PNAS 116 (2019) 201911107.
    [32]
    A. Garcia-Ortiz, K. S. Arias, M. J. Climent, A. Corma, S. Iborra, ChemSusChem 13 (2020) 707-714.
    [33]
    V. Bethmont, C. Montassier, P. Marecot, J. Mol. Catal. A Chem. 152 (2000) 133-140.
    [34]
    L. Jiao, J. R. Regalbuto, J. Catal. 260 (2008) 342-350.
    [35]
    N. Wang, Q. Sun, R. Bai, X. Li, G. Guo, J. Yu, J. Am. Chem. Soc. 138 (2016) 7484-7487.
    [36]
    N. A. Grosso-Giordano, T. R. Eaton, Z. Bo, C.-C. Yang, J. M. Notestein, S. Yacob, Appl. Catal. B: Environ. 192 (2016) 93-100.
    [37]
    K. Moller, T. Bein, Chem. Soc. Rev. 42 (2013) 3689-3707.
    [38]
    T. L. Cui, W. Y. Ke, W. B. Zhang, H. H. Wang, X. H. Li, J. S. Chen, Angew Chem Int Ed Engl. 55 (2016) 9178-9182.
    [39]
    C. Wang, L. Wang, J. Zhang, H. Wang, J. P. Lewis, F. S. Xiao, J. Am. Chem. Soc. 138 (2016) 7880-7883.
    [40]
    Y. Chai, W. Shang, W. Li, G. Wu, W. Dai, N. Guan, L. Li, Adv. Sci. 2019, 6, 1900299
    [41]
    J. Gu, Z. Zhang, P. Hu, L. Ding, N. Xue, L. Peng, X. Guo, M. Lin, W. Ding, ACS Catal. 5 (2015) 6893-6901.
    [42]
    R. L. M. Franco, T. G. Oliveira, A. M. G. Pedrosa, S. Naviciene, M. G. B. Souza, Mat. Res. 16 (2013) 1449-1456.
    [43]
    M. Dams, L. Drijkoningen, B. Pauwels, G. V. Tendeloo, D. E. D. Vos, P. A. Jacobs, J. Catal. 209 (2002) 225-236.
    [44]
    G. Beketov, B. Heinrichs, J. P. Pirard, S. Chenakin, N. Kruse, Appl. Surf. Sci. 287 (2013) 293-298.
    [45]
    R. M. Al Soubaihi, K. M. Saoud, F. Ye, M. T. Zar Myint, S. Saeed, J. Dutta, Micro. Meso. Mater. 292 (2020) 109758.
    [46]
    M. Brun, A. Berthet, J. C. Bertolini, J. Electron Spectrosc. Relat. Phenom. 104 (1999) 55-60.
    [47]
    F. Menegazzo, T. Fantinel, M. Signoretto, F. Pinna, Chem. Commun. 8 (2007) 876-879.
    [48]
    S. F. Parker, H. C. Walker, S. K. Callear, E. Grunewald, T. Petzold, D. Wolf, K. Mobus, J. Adam, S. D. Wieland, M. Jimenez-Ruiz, P. W. Albers, Chem. Sci. 10 (2019) 480-489.
    [49]
    M. Peter, J. M. Flores Camacho, S. Adamovski, L. K. Ono, K. H. Dostert, C. P. OBrien, B. Roldan Cuenya, S. Schauermann, H. J. Freund, Angew. Chem. Int. Ed. 52 (2013) 5175-5179.
    [50]
    L. Sheu, Z. Karpinksi, W. M. H. Sachtler, J. Phys. Chem. 93 (1989) 4890-4894.
    [51]
    P. Neves, M. M. Antunes, P. A. Russo, J. P. Abrantes, S. Lima, A. Fernandes, M. Pillinger, S. M. Rocha, M. F. Ribeiro, A. A. Valente, Green Chem. 15 (2013) 3367-3376.
    [52]
    Y. Wang, Q. Cui, Y. J. Guan, P. Wu, Green Chem. 20 (2018) 2110-2117
    [53]
    P. Lanzafame, D. M. Temi, S. Perathoner, G. Centi, A. Macario, A. Aloise, G. Giordano, Catal. Today 175 (2011) 435-441.
    [54]
    W. Fang, H. Hu, D. Ping, Z. Ma, Y. He, W. Lei, Y. Zhang, Appl. Catal. A: Gen. 565 (2018) 146-151.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (164) PDF downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return