Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Yifei Wang, Wending Pan, Kee Wah Leong, Shijing Luo, Xiaolong Zhao, Dennis Y.C. Leung. Solid-state Al-air battery with an ethanol gel electrolyte. Green Energy&Environment, 2023, 8(4): 1117-1127. doi: 10.1016/j.gee.2021.05.011
Citation: Yifei Wang, Wending Pan, Kee Wah Leong, Shijing Luo, Xiaolong Zhao, Dennis Y.C. Leung. Solid-state Al-air battery with an ethanol gel electrolyte. Green Energy&Environment, 2023, 8(4): 1117-1127. doi: 10.1016/j.gee.2021.05.011

Solid-state Al-air battery with an ethanol gel electrolyte

doi: 10.1016/j.gee.2021.05.011
  • Hydrogel electrolyte is especially suitable for solid-state Al-air batteries targeted for various portable applications, which may, however, lead to continuous Al corrosion during battery standby. To tackle this issue, an ethanol gel electrolyte is developed for Al-air battery for the first time in this work, by using KOH as solute and polyethylene oxide as gelling agent. The ethanol gel is found to effectively inhibit Al corrosion compared with the water gel counterpart, leading to stable Al storage. When assembled into an Al-air battery, the ethanol gel electrolyte achieves a much improved discharge lifetime and specific capacity, which are 5.3 and 4.1 times of the water gel electrolyte at 0.1 mA cm-2, respectively. By studying the gel properties, it is found that a lower ethanol purity can improve the battery power output, but at the price of decreased discharge efficiency. On the contrary, a higher polymer concentration will decrease the power output, but can bring extra benefit to the discharge efficiency. As for the gel thickness, a moderate value of 1 mm is preferred to balance the power output and energy efficiency. Finally, to cater the increasing market of flexible electronics, a flexible Al-air battery is developed by impregnating the ethanol gel into a paper substrate, which can function normally even under serious deformation or damage.

     

  • • An ethanol gel electrolyte is developed for Al-air battery for the first time. • Polyethylene oxide is used for gelling the potassium hydroxide ethanol solution. • The Al anode is well preserved inside the battery for an extended shelf life. • A high specific capacity of 2546 mA h g−1 is achieved at low current density. • A moderate power output of 4 mW cm−2 is obtained for low-power applications.
  • loading
  • [1]
    M.A. Rahman; X. Wang; C. Wen, Journal of the Electrochemical Society 160 (2013) A1759.
    [2]
    P. Goel; D. Dobhal; R. Sharma, Journal of Energy Storage 28 (2020) 101287.
    [3]
    Y. Wang; H. Kwok; W. Pan; H. Zhang; D.Y. Leung, Journal of Power Sources 414 (2019) 278-282.
    [4]
    X. Ou; G. Zhang; S. Zhang; X. Tong; Y. Tang, Energy Storage Materials 28 (2020) 357-363.
    [5]
    H. Wang; Y. Tang, Chemical Research in Chinese Universities 36 (2020) 402-409.
    [6]
    M. Wang; Q. Liu; G. Wu; J. Ma; Y. Tang, Green Energy & Environment (2021).
    [7]
    B.J. Hopkins; Y. Shao-Horn; D.P. Hart, Science 362 (2018) 658-661.
    [8]
    Y.-J. Cho; I.-J. Park; H.-J. Lee; J.-G. Kim, Journal of Power Sources 277 (2015) 370-378.
    [9]
    M. Jingling; R. Fengzhang; W. Guangxin; X. Yi; L. Yaqiong; W. Jiuba, International Journal of Hydrogen Energy 42 (2017) 11654-11661.
    [10]
    R. Liang; Y. Su; X.-L. Sui; D.-M. Gu; G.-S. Huang; Z.-B. Wang, Journal of Solid State Electrochemistry 23 (2019) 53-62.
    [11]
    I.-J. Park; S.-R. Choi; J.-G. Kim, Journal of Power Sources 357 (2017) 47-55.
    [12]
    Z. Sun; H. Lu, Journal of the Electrochemical Society 162 (2015) A1617.
    [13]
    Z. Wu; H. Zhang; C. Guo; J. Zou; K. Qin; C. Ban; H. Nagaumi, Journal of Solid State Electrochemistry 23 (2019) 2483-2491.
    [14]
    H. Jiang; S. Yu; W. Li; Y. Yang; L. Yang; Z. Zhang, Journal of Power Sources 448 (2020) 227460.
    [15]
    X. Li; J. Li; D. Zhang; L. Gao; J. Qu; T. Lin, Journal of Molecular Liquids 322 (2021) 114946.
    [16]
    O. Taeri; A. Hassanzadeh; F. Ravari, ChemElectroChem 7 (2020) 2123-2135.
    [17]
    S. Wu; Q. Zhang; D. Sun; J. Luan; H. Shi; S. Hu; Y. Tang; H. Wang, Chemical Engineering Journal 383 (2020) 123162.
    [18]
    L. Yang; Y. Wu; S. Chen; Y. Xiao; S. Chen; P. Zheng; J. Wang; J.-E. Qu, Materials Chemistry and Physics 257 (2021) 123787.
    [19]
    Y. Wang; H.Y. Kwok; W. Pan; Y. Zhang; H. Zhang; X. Lu; D.Y. Leung, Electrochimica Acta 319 (2019) 947-957.
    [20]
    B. Chen; D.Y. Leung; J. Xuan; H. Wang, Journal of Power Sources 336 (2016) 19-26.
    [21]
    T. Phusittananan; W. Kao-Ian; M.T. Nguyen; T. Yonezawa; R. Pornprasertsuk; A.A. Mohamad; S. Kheawhom, Frontiers in Energy Research 8 (2020) 189.
    [22]
    P. Teabnamang; W. Kao-Ian; M.T. Nguyen; T. Yonezawa; R. Cheacharoen; S. Kheawhom, Energies 13 (2020) 2275.
    [23]
    L. Wang; R. Cheng; C. Liu; M. Ma; W. Wang; G. Yang; M. Leung; F. Liu; S. Feng, Materials Today Physics 14 (2020) 100242.
    [24]
    Y. Xu; Y. Zhao; J. Ren; Y. Zhang; H. Peng, Angewandte Chemie 128 (2016) 8111-8114.
    [25]
    Y. Ma; A. Sumboja; W. Zang; S. Yin; S. Wang; S.J. Pennycook; Z. Kou; Z. Liu; X. Li; J. Wang, ACS applied materials & interfaces 11 (2018) 1988-1995.
    [26]
    Y. Wang; W. Pan; H.Y. Kwok; H. Zhang; X. Lu; D.Y. Leung, Journal of Power Sources 437 (2019) 226896.
    [27]
    Y. Yu; Y. Zuo; Y. Liu; Y. Wu; Z. Zhang; Q. Cao; C. Zuo, Nanomaterials 10 (2020) 216.
    [28]
    M. Gaele; F. Migliardini; T. Di Palma, Journal of Solid State Electrochemistry (2021) 1-10.
    [29]
    J. Shen; L. Meng; Y. Liu; C. Chen; Y. Zhu; C. Li, RSC advances 8 (2018) 22193-22198.
    [30]
    M. Pino; J. Chacon; E. Fatas; P. Ocon, Journal of Power Sources 299 (2015) 195-201.
    [31]
    Z. Zhang; C. Zuo; Z. Liu; Y. Yu; Y. Zuo; Y. Song, Journal of Power Sources 251 (2014) 470-475.
    [32]
    T. Di Palma; F. Migliardini; D. Caputo; P. Corbo, Carbohydrate polymers 157 (2017) 122-127.
    [33]
    F. Migliardini; T. Di Palma; M. Gaele; P. Corbo, Journal of Solid State Electrochemistry 22 (2018) 2901-2916.
    [34]
    T. Di Palma; F. Migliardini; M. Gaele; P. Corbo, Ionics 25 (2019) 4209-4217.
    [35]
    P. Sun; J. Chen; Y. Huang; J.-H. Tian; S. Li; G. Wang; Q. Zhang; Z. Tian; L. Zhang, Energy Storage Materials 34 (2021) 427-435.
    [36]
    Y. Zuo; Y. Yu; H. Liu; Z. Gu; Q. Cao; C. Zuo, Batteries 6 (2020) 19.
    [37]
    Y. Wang; H.Y. Kwok; W. Pan; H. Zhang; X. Lu; D.Y. Leung, Applied Energy 251 (2019) 113342.
    [38]
    J. Ren; C. Fu; Q. Dong; M. Jiang; A. Dong; G. Zhu; J. Zhang; B. Sun, ACS Sustainable Chemistry & Engineering (2021).
    [39]
    G. Wu; S. Lin; C. Yang, Journal of Membrane Science 280 (2006) 802-808.
    [40]
    A. Mohamad, Corrosion Science 50 (2008) 3475-3479.
    [41]
    W. Fang-Hui; L. Chun-Xi; M. Hong; W. Zi-Hao, Journal of Beijing University of Chemical Technology 33 (2006) 17.
    [42]
    S. Luo; Y. Wang; T.C. Kong; W. Pan; X. Zhao; D.Y. Leung, Journal of Power Sources 490 (2021) 229526.
    [43]
    Y. Wang; H.Y. Kwok; W. Pan; Y. Zhang; H. Zhang; X. Lu; D.Y. Leung, Journal of Power Sources 450 (2020) 227685.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (198) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return