Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Jianwen Liu, Ying Guo, Xian-Zhu Fu, Jing-Li Luo, Chunyi Zhi. Strengthening absorption ability of Co-N-C as efficient bifunctional oxygen catalyst by modulating the d band center using MoC. Green Energy&Environment, 2023, 8(2): 459-469. doi: 10.1016/j.gee.2021.05.008
Citation: Jianwen Liu, Ying Guo, Xian-Zhu Fu, Jing-Li Luo, Chunyi Zhi. Strengthening absorption ability of Co-N-C as efficient bifunctional oxygen catalyst by modulating the d band center using MoC. Green Energy&Environment, 2023, 8(2): 459-469. doi: 10.1016/j.gee.2021.05.008

Strengthening absorption ability of Co-N-C as efficient bifunctional oxygen catalyst by modulating the d band center using MoC

doi: 10.1016/j.gee.2021.05.008
  • Co–N–C is a promising oxygen electrochemical catalyst due to its high stability and good durability. However, due to the limited adsorption ability improvement for oxygen-containing intermediates, it usually exhibits inadequate catalytic activity with 2-electron pathway and high selectivity of hydrogen peroxide. Herein, the adsorption of Co–N–C to these intermediates is modulated by constructing heterostructures using transition metals and their derivatives based on d-band theory. The heterostructured nanobelts with MoC core and pomegranate-like carbon shell consisting of Co nanoparticles and N dopant (MoC/Co–N–C) are engineered to successfully modulate the d band center of active Co–N–C sites, resulting in a remarkably enhanced electrocatalysis performance. The optimally performing MoC/Co–N–C exhibits outstanding bi-catalytic activity and stability for the oxygen electrochemistry, featuring a high wave-half potential of 0.865 V for the oxygen reduction reaction (ORR) and low overpotential of 370 mV for the oxygen evolution reaction (OER) at 10 mA cm-2. The zinc air batteries with the MoC/Co–N–C catalyst demonstrate a large power density of 180 mW cm-2 and a long cycling lifespan (2000 cycles). The density functional theory calculations with Hubbard correction (DFT + U) reveal the electron transferring from Co to Mo atoms that effectively modulate the d band center of the active Co sites and achieve optimum adsorption ability with “single site double adsorption” mode.

     

  • • The adsorption ability of Co–N–C is modulated by MoC based on d-band theory. • MoC/Co–N–C nanobelts are developed as high performance bifunctional catalysts. • MoC/Co–N–C delivers a half-wave potential of 0.865 V for the ORR. • MoC/Co–N–C delivers a low overpotential of 0.370 V at 10 mA/cm2 for the OER. • The zinc air batteries demonstrate large power density and long cycling lifespan.
    Jianwen Liu and Ying Guo and contributed equally to this work.
  • loading
  • [1]
    M.D. Zhang, Q.B. Dai, H.G. Zheng, M.D. Chen, L.M. Dai, Adv. Mater. 30 (2018) 1705431.
    [2]
    Q.C. Liu, Z.W. Chang, Z.J. Li, X.B. Zhang, Small Methods 2 (2018) Unsp 1700231.
    [3]
    T. Tang, W.-J. Jiang, X.-Z. Liu, J. Deng, S. Niu, B. Wang, S.-F. Jin, Q. Zhang, L. Gu, J.-S. Hu, L.-J. Wan, J. Am. Chem. Soc. 142 (2020) 7116-7127.
    [4]
    Z.L. Wang, D. Xu, J.J. Xu, X.B. Zhang, Chem. Soc. Rev. 43 (2014) 7746-7786.
    [5]
    D.F. Yan, Y.X. Li, J. Huo, R. Chen, L.M. Dai, S.Y. Wang, Adv. Mater. 29 (2017) 1606459.
    [6]
    H. Tan, Y. Li, J. Kim, T. Takei, Z. Wang, X. Xu, J. Wang, Y. Bando, Y.-M. Kang, J. Tang, Y. Yamauchi, Adv. Sci. 5 (2018) 1800120.
    [7]
    W. Xia, J. Tang, J. Li, S. Zhang, K.C.-W. Wu, J. He, Y. Yamauchi, Angew. Chem., Int. Ed. 131 (2019) 13354-13359.
    [8]
    T. Asefa, Acc. Chem. Res. 49 (2016) 1873-1883.
    [9]
    Y. Zhao, J. Wan, H. Yao, L. Zhang, K. Lin, L. Wang, N. Yang, D. Liu, L. Song, J. Zhu, L. Gu, L. Liu, H. Zhao, Y. Li, D. Wang, Nat. Chem. 10 (2018) 924-931.
    [10]
    H. Mei, M.R. Yang, Y.F. Shen, F. He, Z.X. Zhou, X.H. Chen, Y.R. Yang, S.Q. Liu, Y.J. Zhang, Carbon 144 (2019) 312-320.
    [11]
    Y. Xu, J. Xue, Q. Zhou, Y.J. Zheng, X.H. Chen, S.Q. Liu, Y.F. Shen, Y.J. Zhang, Angew. Chem., Int. Ed. 59 (2020) 2-8.
    [12]
    J. Wang, W. Liu, G. Luo, Z. Li, C. Zhao, H. Zhang, M. Zhu, Q. Xu, X. Wang, C. Zhao, Y. Qu, Z. Yang, T. Yao, Y. Li, Y. Lin, Y. Wu, Y. Li, Energy Environ Sci. 11 (2018) 3375-3379.
    [13]
    W. Ye, S. Chen, Y. Lin, L. Yang, S. Chen, X. Zheng, Z. Qi, C. Wang, R. Long, M. Chen, J. Zhu, P. Gao, L. Song, J. Jiang, Y. Xiong, Chem 5 (2019) 2865-2878.
    [14]
    P. Peng, L. Shi, F. Huo, C. Mi, X. Wu, S. Zhang, Z. Xiang, Sci. Adv. 5 (2019) eaaw2322.
    [15]
    L.J. Yang, J.L. Shui, L. Du, Y.Y. Shao, J. Liu, L.M. Dai, Z. Hu, Adv. Mater. 31 (2019) 1804799.
    [16]
    Y. Jia, L.Z. Zhang, L.Z. Zhuang, H.L. Liu, X.C. Yan, X. Wang, J.D. Liu, J.C. Wang, Y.R. Zheng, Z.H. Xiao, E. Taran, J. Chen, D.J. Yang, Z.H. Zhu, S.Y. Wang, L.M. Dai, X.D. Yao, Nat. Catal. 2 (2019) 688-695.
    [17]
    B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen, H. Yin, Adv. Funct. Mater. 27 (2017) 1700795.
    [18]
    C.-X. Zhao, B.-Q. Li, J.-N. Liu, Q. Zhang, Angew. Chem., Int. Ed. DOI: 10.1002/anie.202003917 (2020).
    [19]
    W. Tian, H. Hu, Y. Wang, P. Li, J. Liu, J. Liu, X. Wang, X. Xu, Z. Li, Q. Zhao, H. Ning, W. Wu, M. Wu, ACS Nano 12 (2018) 1990-2000.
    [20]
    Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Chem. Soc. Rev. DOI:10.1039/C9CS00903E (2020).
    [21]
    J. Li, H. Zhang, W. Samarakoon, W. Shan, D.A. Cullen, S. Karakalos, M. Chen, D. Gu, K.L. More, G. Wang, Z. Feng, Z. Wang, G. Wu, Angew. Chem., Int. Ed. 58 (2019) 18971-18980.
    [22]
    H. Xu, D. Cheng, D. Cao, X.C. Zeng, Nat. Catal. 1 (2018) 339-348.
    [23]
    L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang, F. Mo, Q. Yang, J. Su, Y. Gao, J.A. Zapien, C. Zhi, ACS Nano 12 (2018) 1949-1958.
    [24]
    C. Hu, H. Jin, B. Liu, L. Liang, Z. Wang, D. Chen, D. He, S. Mu, Nano Energy 82 (2021) 105714.
    [25]
    X.X. Wang, V. Prabhakaran, Y. He, Y. Shao, G. Wu, Adv. Mater. 31 (2019) 1805126.
    [26]
    K. Liu, Z. Qiao, S. Hwang, Z. Liu, H. Zhang, D. Su, H. Xu, G. Wu, G. Wang, Appl. Catal., B 243 (2019) 195-203.
    [27]
    C.H. Choi, H.-K. Lim, M.W. Chung, G. Chon, N. Ranjbar Sahraie, A. Altin, M.-T. Sougrati, L. Stievano, H.S. Oh, E.S. Park, F. Luo, P. Strasser, G. Drazic, K.J.J. Mayrhofer, H. Kim, F. Jaouen, Energy Environ Sci. 11 (2018) 3176-3182.
    [28]
    Z. Pei, Z. Tang, Z. Liu, Y. Huang, Y. Wang, H. Li, Q. Xue, M. Zhu, D. Tang, C. Zhi, J. Mater. Chem. A 6 (2018) 489-497.
    [29]
    E. Jung, H. Shin, B.-H. Lee, V. Efremov, S. Lee, H.S. Lee, J. Kim, W. Hooch Antink, S. Park, K.-S. Lee, S.-P. Cho, J.S. Yoo, Y.-E. Sung, T. Hyeon, Nat. Mater. 19 (2020) 436-442.
    [30]
    J. Gao, H.b. Yang, X. Huang, S.-F. Hung, W. Cai, C. Jia, S. Miao, H.M. Chen, X. Yang, Y. Huang, T. Zhang, B. Liu, Chem 6 (2020) 658-674.
    [31]
    K. Liu, S. Kattel, V. Mao, G. Wang, J. Phys. Chem. C 120 (2016) 1586-1596.
    [32]
    Y. Jiao, Y. Zheng, M.T. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44 (2015) 2060-2086.
    [33]
    B. Hammer, J.K. Norskov, in: B.C. Gates, H. Knozinger (Eds.), Advances in Catalysis, Vol 45: Impact of Surface Science on Catalysis, 2000, pp. 71-129.
    [34]
    V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Norskov, Angew. Chem., Int. Ed. 45 (2006) 2897-2901.
    [35]
    K. Artyushkova, S. Levendosky, P. Atanassov, J. Fulghum, Top. Catal. 46 (2007) 263-275.
    [36]
    X.X. Wang, D.A. Cullen, Y.-T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M.H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K.L. More, J.S. Spendelow, G. Wu, Adv. Mater. 30 (2018) 1706758.
    [37]
    P. Teppor, R. Jaeger, E. Haerk, I. Tallo, U. Joost, M. Kook, P. Paiste, K. Smits, K. Kirsimaee, E. Lust, J. Electrochem. Soc. 165 (2018) F1217-F1223.
    [38]
    Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst, B. Li, S. Karakalos, A.J. Kropf, E.C. Wegener, J. Sokolowski, M. Chen, D. Myers, D. Su, K.L. More, G. Wang, S. Litster, G. Wu, Energy Environ Sci. 12 (2019) 250-260.
    [39]
    Z. Pei, H. Li, Y. Huang, Q. Xue, Y. Huang, M. Zhu, Z. Wang, C. Zhi, Energy Environ Sci. 10 (2017) 742-749.
    [40]
    Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 10 (2011) 780-786.
    [41]
    A. Kulkarni, S. Siahrostami, A. Patel, J.K. Norskov, Chem. Rev. 118 (2018) 2302-2312.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (159) PDF downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return