Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Jiacheng Chen, Jiayu Li, Jing Xu, Minghui Zhu, Yi-Fan Han. Phthalocyanine-derived catalysts decorated by metallic nanoclusters for enhanced CO2 electroreduction. Green Energy&Environment, 2023, 8(2): 444-451. doi: 10.1016/j.gee.2021.05.006
Citation: Jiacheng Chen, Jiayu Li, Jing Xu, Minghui Zhu, Yi-Fan Han. Phthalocyanine-derived catalysts decorated by metallic nanoclusters for enhanced CO2 electroreduction. Green Energy&Environment, 2023, 8(2): 444-451. doi: 10.1016/j.gee.2021.05.006

Phthalocyanine-derived catalysts decorated by metallic nanoclusters for enhanced CO2 electroreduction

doi: 10.1016/j.gee.2021.05.006
  • Electrochemical CO2 reduction (CO2RR) over molecular catalysts is a paramount approach for CO2 conversion to CO. Herein, we report a novel phthalocyanine-derived catalyst synthesized by a two-step method with a much improved electroconductivity. Furthermore, the catalyst contains both Ni–N4 sites and highly dispersed metallic Ni nanoclusters, leading to an increased CO2RR currents by two folds. Isotope labelling study and in situ spectroscopic analysis demonstrate that the existence of metallic Ni nanoclusters is the key factor for the activity enhancement and can shift the CO2RR mechanism from being electron transfer (ET)-limited (forming *COO-) to concerted proton-electron transfer (CPET)-limited (forming CO).

     

  • • We report a novel catalyst containing Ni–N4 and highly dispersed metallic Ni nanoclusters. • The coexistence of Ni–N4 and metallic Ni nanoclusters increases the TOFCO by ca. 50%. • High-temperature pyrolysis shifts the RDS of CO2RR on NiPc-based catalysts.
  • loading
  • [1]
    E. Anagnostou, E.H. John, K.M. Edgar, G.L. Foster, A. Ridgwell, G.N. Inglis, R.D. Pancost, D.J. Lunt, P.N. Pearson, Nature 533 (2016) 380-384.
    [2]
    P.M. Cox, R.A. Betts, C.D. Jones, S.A. Spall, I.J. Totterdell, Nature 408 (2000) 184-187.
    [3]
    T.R. Karl, K.E. Trenberth, Science 302 (2003) 1719.
    [4]
    P.M. Maitlis, A. de Klerk, John Wiley & Sons 2013.
    [5]
    G.A. Olah, Angew. Chem. Int. Ed. 44 (2005) 2636-2639.
    [6]
    V. Subramani, S.K. Gangwal, Energy Fuels 22 (2008) 814-839.
    [7]
    F. Jiao, J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Science 351 (2016) 1065-1068.
    [8]
    D.T. Whipple, P.J.A. Kenis, J. Phys. Chem. Lett. 1 (2010) 3451-3458.
    [9]
    D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Nat. Commun. 5 (2014) 4948.
    [10]
    J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 43 (2014) 631-675.
    [11]
    J. Shen, R. Kortlever, R. Kas, Y.Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K.J. Schouten, G. Mul, M.T. Koper, Nat. Commun. 6 (2015) 8177.
    [12]
    Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen, F. Jiao, Nat. Commun. 5 (2014) 3242.
    [13]
    X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Nat. Commun. 8 (2017) 14675.
    [14]
    M. Zhu, R. Ye, K. Jin, N. Lazouski, K. Manthiram, ACS Energy Lett. 3 (2018) 1381-1386.
    [15]
    Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 19969-19972.
    [16]
    N. Morlanes, K. Takanabe, V. Rodionov, ACS Catal. 6 (2016) 3092-3095.
    [17]
    X.M. Hu, M.H. Ronne, S.U. Pedersen, T. Skrydstrup, K. Daasbjerg, Angew. Chem. Int. Ed. Engl. 56 (2017) 6468-6472.
    [18]
    W.W. Kramer, C.C.L. McCrory, Chem. Sci. 7 (2016) 2506-2515.
    [19]
    A. Pizarro, G. Abarca, C. Gutierrez-Ceron, D. Cortes-Arriagada, F. Bernardi, C. Berrios, J.F. Silva, M.C. Rezende, J.H. Zagal, R. Onate, I. Ponce, ACS Catal. (2018) 8406-8419.
    [20]
    S.A. Yao, R.E. Ruther, L. Zhang, R.A. Franking, R.J. Hamers, J.F. Berry, J. Am. Chem. Soc. 134 (2012) 15632-15635.
    [21]
    A. Maurin, M. Robert, Chem. Commun. (Camb.) 52 (2016) 12084-12087.
    [22]
    M. Schreier, J. Luo, P. Gao, T. Moehl, M.T. Mayer, M. Gratzel, J. Am. Chem. Soc. 138 (2016) 1938-1946.
    [23]
    M. Zhu, J. Chen, L. Huang, R. Ye, J. Xu, Y.-F. Han, Angew. Chem. Int. Ed. 58 (2019) 6595-6599.
    [24]
    S. Lin, C.S. Diercks, Y.B. Zhang, N. Kornienko, E.M. Nichols, Y. Zhao, A.R. Paris, D. Kim, P. Yang, O.M. Yaghi, C.J. Chang, Science 349 (2015) 1208-1213.
    [25]
    N. Kornienko, Y. Zhao, C.S. Kley, C. Zhu, D. Kim, S. Lin, C.J. Chang, O.M. Yaghi, P. Yang, J. Am. Chem. Soc. 137 (2015) 14129-14135.
    [26]
    H. Wu, M. Zeng, X. Zhu, C. Tian, B. Mei, Y. Song, X.-L. Du, Z. Jiang, L. He, C. Xia, S. Dai, ChemElectroChem 5 (2018) 2717-2721.
    [27]
    C.S. Diercks, S. Lin, N. Kornienko, E.A. Kapustin, E.M. Nichols, C. Zhu, Y. Zhao, C.J. Chang, O.M. Yaghi, J. Am. Chem. Soc. 140 (2018) 1116-1122.
    [28]
    N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang, F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D.J. Miller, J. Lu, S.-T. Lee, Y. Li, Chem 3 (2017) 652-664.
    [29]
    J. Chen, J. Li, W. Liu, X. Ma, J. Xu, M. Zhu, Y.-F. Han, Green Chem. 21 (2019) 6056-6061.
    [30]
    Q. Zhao, C. Zhang, R. Hu, Z. Du, J. Gu, Y. Cui, X. Chen, W. Xu, Z. Cheng, S. Li, B. Li, Y. Liu, W. Chen, C. Liu, J. Shang, L. Song, S. Yang, ACS Nano 15 (2021) 4927-4936.
    [31]
    K.R.G. Lim, A.D. Handoko, S.K. Nemani, B. Wyatt, H.-Y. Jiang, J. Tang, B. Anasori, Z.W. Seh, ACS Nano 14 (2020) 10834-10864.
    [32]
    C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 139 (2017) 8078-8081.
    [33]
    X.-M. Hu, H.H. Hval, E.T. Bjerglund, K.J. Dalgaard, M.R. Madsen, M.-M. Pohl, E. Welter, P. Lamagni, K.B. Buhl, M. Bremholm, M. Beller, S.U. Pedersen, T. Skrydstrup, K. Daasbjerg, ACS Catal. 8 (2018) 6255-6264.
    [34]
    K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H. Wang, Energy Environ. Sci. 11 (2018) 893-903.
    [35]
    T. Moller, W. Ju, A. Bagger, X. Wang, F. Luo, T. Ngo Thanh, A.S. Varela, J. Rossmeisl, P. Strasser, Energy Environ. Sci. 12 (2019) 640-647.
    [36]
    H.B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H.M. Chen, C.M. Li, T. Zhang, B. Liu, Nature Energy 3 (2018) 140-147.
    [37]
    K. Jiang, S. Siahrostami, A.J. Akey, Y. Li, Z. Lu, J. Lattimer, Y. Hu, C. Stokes, M. Gangishetty, G. Chen, Y. Zhou, W. Hill, W.-B. Cai, D. Bell, K. Chan, J.K. Noerskov, Y. Cui, H. Wang, Chem 3 (2017) 950-960.
    [38]
    Y. Cheng, S. Zhao, B. Johannessen, J.P. Veder, M. Saunders, M.R. Rowles, M. Cheng, C. Liu, M.F. Chisholm, R. De Marco, H.M. Cheng, S.Z. Yang, S.P. Jiang, Adv. Mater. 30 (2018) e1706287.
    [39]
    T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, H. Wang, Joule 3 (2019) 265-278.
    [40]
    R. Mahfouz, F.J. Cadete Santos Aires, A. Brenier, B. Jacquier, J.C. Bertolini, Appl. Surf. Sci. 254 (2008) 5181-5190.
    [41]
    M. Szybowicz, W. Bala, K. Fabisiak, K. Paprocki, M. Drozdowski, Cryst. Res. Technol. 45 (2010) 1265-1271.
    [42]
    T.V. Basova, B.A. Kolesov, A.G. Gurek, V. Ahsen, Thin Solid Films 385 (2001) 246-251.
    [43]
    M. Zhu, J. Chen, R. Guo, J. Xu, X. Fang, Y.-F. Han, Appl. Catal. B 251 (2019) 112-118.
    [44]
    D. Wohrle, E. Preussner, Die Makromolekulare Chemie 186 (1985) 2189-2207.
    [45]
    R. Ridhi, S. Singh, G.S.S. Saini, S.K. Tripathi, J. Phys. Chem. Solids 115 (2018) 119-126.
    [46]
    G.S.S. Saini, S.D. Dogra, K. Sharma, S. Singh, S.K. Tripathi, V. Sathe, R.K. Singh, Vib. Spectrosc 57 (2011) 61-71.
    [47]
    M. Jia, C. Choi, T.S. Wu, C. Ma, P. Kang, H. Tao, Q. Fan, S. Hong, S. Liu, Y.L. Soo, Y. Jung, J. Qiu, Z. Sun, Chem. Sci. 9 (2018) 8775-8780.
    [48]
    L. Kong, B.-Q. Li, H.-J. Peng, R. Zhang, J. Xie, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. (2018) 1800849.
    [49]
    A. Kudo, S. Nakagawa, A. Tsuneto, T. Sakata, J. Electrochem. Soc. 140 (1993) 1541-1545.
    [50]
    Z. Li, D. He, X. Yan, S. Dai, S. Younan, Z. Ke, X. Pan, X. Xiao, H. Wu, J. Gu, Size-Angew. Chem. Int. Ed. Engl. 59 (2020) 18572-18577.
    [51]
    A. Wuttig, Y. Yoon, J. Ryu, Y. Surendranath, J. Am. Chem. Soc. 139 (2017) 17109-17113.
    [52]
    A.M. Limaye, J.S. Zeng, A.P. Willard, K. Manthiram, Nat. Commun. 12 (2021) 703.
    [53]
    J.S. Zeng, N. Corbin, K. Williams, K. Manthiram, ACS Catal. 10 (2020) 4326-4336.
    [54]
    Y. Liu, C.C.L. McCrory, Nat. Commun. 10 (2019) 1683.
    [55]
    M. Tammer, G. Sokrates, Colloid. Polym. Sci. 283 (2004) 235-235.
    [56]
    J. Heyes, M. Dunwell, B. Xu, J. Phys. Chem. C 120 (2016) 17334-17341.
    [57]
    S.J. Lee, S.W. Han, M. Yoon, K. Kim, Vib. Spectrosc 24 (2000) 265-275.
    [58]
    E. Garand, T. Wende, D.J. Goebbert, R. Bergmann, G. Meijer, D.M. Neumark, K.R. Asmis, J. Am. Chem. Soc. 132 (2010) 849-856.
    [59]
    N.J. Firet, W.A. Smith, ACS Catal. 7 (2016) 606-612.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (165) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return