Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Kaihang Sun, Zhitao Zhang, Chenyang Shen, Ning Rui, Chang-jun Liu. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol. Green Energy&Environment, 2022, 7(4): 807-817. doi: 10.1016/j.gee.2021.05.004
Citation: Kaihang Sun, Zhitao Zhang, Chenyang Shen, Ning Rui, Chang-jun Liu. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol. Green Energy&Environment, 2022, 7(4): 807-817. doi: 10.1016/j.gee.2021.05.004

The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol

doi: 10.1016/j.gee.2021.05.004
  • Silver catalyst has been extensively investigated for photocatalytic and electrochemical CO2 reduction. However, its high activity for selective hydrogenation of CO2 to methanol has not been confirmed. Here, the feasibility of the indium oxide supported silver catalyst was investigated for CO2 hydrogenation to methanol by the density functional theoretical (DFT) study and then by the experimental investigation. The DFT study shows there exists an intense Ag-In2O3 interaction, which causes silver to be positively charged. The positively charged Ag species changes the electronic structure of the metal, facilitates the formation of the Ag-In2O3 interfacial site for activation and dissociation of carbon dioxide. The promoted CO2 dissociation leads to the enhanced methanol synthesis via the CO hydrogenation route as CO2*→CO*→HCO*→H2CO*→H3CO*→H3COH*. The Ag/In2O3 catalyst was then prepared using the deposition-precipitation method. The experimental study confirms the theoretical prediction. The methanol selectivity of CO2 hydrogenation on Ag/In2O3 reaches 100.0% at reaction temperature of 200 ℃. It remains more than 70.0% between 200 and 275 ℃. At 300 ℃ and 5 MPa, the methanol selectivity still keeps 58.2% with a CO2 conversion of 13.6% and a space-time yield (STY) of methanol of 0.453 gmethanol gcat-1 h-1, which is the highest methanol STY ever reported for silver catalyst. The catalyst characterization confirms the intense Ag-In2O3 interaction as well, which causes high Ag dispersion, increases and stabilizes the oxygen vacancies and creates the active Ag-In2O3 interfacial site for the enhanced CO2 hydrogenation to methanol.

     

  • • CO2 hydrogenation to methanol was theoretically and experimentally studied. • An intense Ag–In2O3 interaction exists and creates the active interfacial site. • The interfacial site facilitates methanol synthesis via the CO hydrogenation route. • High methanol selectivity with enhanced activity was achieved on Ag/In2O3.
  • loading
  • [1]
    X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Chem. Rev. 120 (2020) 7984-8034
    [2]
    Y. Liu, D. Deng, X. Bao, Chem 6 (2020) 2497-2514
    [3]
    F. Sha, Z. Han, S. Tang, J. Wang, C. Li, ChemSusChem 13 (2020) 6160-6181
    [4]
    J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, Chem. Soc. Rev. 49 (2020) 1385-1413
    [5]
    N. Pasupulety, H. Driss, M.R.A. Rafiqui, A.A. Al-Zahrani, M.A. Daous, A.M. Ali, S.F. Zaman, L.A. Petrov, J. Nanosci. Nanotechnol. 19 (2019) 3197-3204
    [6]
    J. Wambach, A. Baiker, A. Wokaun, Phys. Chem. Chem. Phys. 1 (1999) 5071-5080
    [7]
    A. Baiker, M. Kilo, M. Maciejewski, S. Menzi, A. Wokaun, Stud. Surf. Sci. Catal. 75 (1993) 1257-1272
    [8]
    R.A. Koppel, C. Stocker, A. Baiker, J. Catal. 179 (1998) 515-527
    [9]
    Y. Liu, B. Hu, Y. Yin, G. Liu, X. Hong, Acta Phys. -Chim. Sin. 35 (2019) 223-229
    [10]
    J. Sloczynski, R. Grabowski, A. Kozlowska, P. Olszewski, J. Stoch, J. Skrzypek, M. Lachowska, Appl. Catal. A 278 (2004) 11-23
    [11]
    R. Grabowski, J. Sloczynski, M. Sliwa, D. Mucha, R.P. Socha, M. Lachowska, J. Skrzypek, ACS Catal. 1 (2011) 266-278
    [12]
    T.P. Maniecki, P. Mierczynski, W. Maniukiewicz, D. Gebauer, W.K. Jozwiak, Kinet. Catal. 50 (2009) 228-234
    [13]
    S. Tada, F. Watanabe, K. Kiyota, N. Shimoda, R. Hayashi, M. Takahashi, A. Nariyuki, A. Igarashi, S. Satokawa, J. Catal. 351 (2017) 107-118
    [14]
    S. Tada, S. Satokawa, Catal. Commun. 113 (2018) 41-45
    [15]
    C. Wen, A. Yin, W.-L. Dai, Appl. Catal. B 160-161 (2014) 730-741
    [16]
    M.S. Frei, C. Mondelli, R. Garcia-Muelas, K.S. Kley, B. Puertolas, N. Lopez, O.V. Safonova, J.A. Stewart, D. Curulla Ferre, J. Perez-Ramirez, Nat. Commun. 10 (2019) 3377
    [17]
    N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge, C.-J. Liu, Appl. Catal. B 218 (2017) 488-497
    [18]
    H. Jiang, J. Lin, X. Wu, W. Wang, Y. Chen, M. Zhang, J. CO2 Util. 36 (2020) 33-39
    [19]
    Z. Cai, J. Dai, W. Li, K.B. Tan, Z. Huang, G. Zhan, J. Huang, Q. Li, ACS Catal. 10 (2020) 13275-13289
    [20]
    X. Jia, K. Sun, J. Wang, C. Shen, C.-J. Liu, J. Energy Chem. 50 (2020) 409-415
    [21]
    J. Wang, K. Sun, X. Jia, C.-J. Liu, Catal. Today 365 (2021) 341-347
    [22]
    K. Sun, N. Rui, Z. Zhang, Z. Sun, Q. Ge, C.-J. Liu, Green Chem. 22 (2020) 5059-5066
    [23]
    Z. Han, C. Tang, J. Wang, L. Li, C. Li, J. Catal. 394 (2021) 236-244
    [24]
    N. Rui, F. Zhang, K. Sun, Z. Liu, W. Xu, E. Stavitski, S.D. Senanayake, J.A. Rodriguez, C.-J. Liu, ACS Catal. 10 (2020) 11307-11317
    [25]
    N. Rui, K. Sun, C. Shen, C.-J. Liu, J. CO2 Util. 42 (2020) 101313
    [26]
    C. Shen, K. Sun, Z. Zhang, N. Rui, X. Jia, D. Mei, C.-J. Liu, ACS Catal. 11 (2021) 4036-4046
    [27]
    X. Ye, C. Yang, X. Pan, J. Ma, Y. Zhang, Y. Ren, X. Liu, L. Li, Y. Huang, J. Am. Chem. Soc. 142 (2020) 19001-19005
    [28]
    N.H.M.D. Dostagir, C. Thompson, H. Kobayashi, A.M. Karim, A. Fukuoka, A. Shrotri, Catal. Sci. Technol. 10 (2020) 8196-8202
    [29]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186
    [30]
    G. Kresse, J. Hafner, Phys. Rev. B 48 (1993) 13115-13118
    [31]
    P. Blochl, Phys. Rev. B 50 (1994) 17953
    [32]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868
    [33]
    M.S. Frei, M. Capdevila-Cortada, R. Garcia-Muelas, C. Mondelli, N. Lopez, J.A. Stewart, D. Curulla Ferre, J. Perez-Ramirez, J. Catal. 361 (2018) 313-321
    [34]
    M.-S. Liao, J.D. Watts, M.-J. Huang, J. Phys. Chem. C 118 (2014) 21911-21927
    [35]
    T. Liu, Y. Li, C. Liang, New J. Chem. 44 (2020) 2268-2274
    [36]
    J. Zhang, H. Wang, L. Wang, S. Ali, C. Wang, L. Wang, X. Meng, B. Li, D.S. Su, F.-S. Xiao, J. Am. Chem. Soc. 141 (2019) 2975-2983
    [37]
    C. Wang, E. Guan, L. Wang, X. Chu, Z. Wu, J. Zhang, Z. Yang, Y. Jiang, L. Zhang, X. Meng, B.C. Gates, F.-S. Xiao, J. Am. Chem. Soc. 141 (2019) 8482-8488
    [38]
    J. Wang, C.-Y. Liu, T.P. Senftle, J. Zhu, G. Zhang, X. Guo, C. Song, ACS Catal. 10 (2020) 3264-3273
    [39]
    M.S. Frei, C. Mondelli, J. Perez-Ramirez, Chimia 74 (2020) 257-262
    [40]
    X. Jiang, X. Nie, Y. Gong, C.M. Moran, J. Wang, J. Zhu, H. Chang, X. Guo, K.S. Walton, C. Song, J. Catal. 383 (2020) 283-296
    [41]
    O. Martin, A.J. Martin, C. Mondelli, S. Mitchell, T.F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferre, J. Perez-Ramirez, Angew. Chem. Int. Ed. 55 (2016) 6261-6265
    [42]
    K.R. Reyes-Gil, Y. Sun, E. Reyes-Garcia, D. Raftery, J. Phys. Chem. C 113 (2009) 12558-12570
    [43]
    F. Gu, C. Li, D. Han, Z. Wang, ACS Appl. Mater. Interfaces 10 (2018) 933-942
    [44]
    K.R. Devi, S.D. Meetei, S.D. Singh, Mater. Charact. 114 (2016) 197-203
    [45]
    F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, J. Am. Chem. Soc. 136 (2014) 6826-6829
    [46]
    J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C.I. Wang, Y. Shen, Y. Tong, Sci. Rep. 3 (2013) 1021
    [47]
    H. Zhu, X. Wang, F. Yang, X. Yang, Cryst. Growth Des. 8 (2008) 950-956
    [48]
    M. Kaur, N. Jain, K. Sharma, S. Bhattacharya, M. Roy, A.K. Tyagi, S.K. Gupta, J.V. Yakhmi, Sens. Actuator B-Chem. 133 (2008) 456-461
    [49]
    W. Wang, Z. Qu, L. Song, Q. Fu, J. Energy Chem. 47 (2020) 18-28
    [50]
    Z. Lu, K. Sun, J. Wang, Z. Zhang, C. Liu, Catalysts 10 (2020) 1360
    [51]
    A. Tsoukalou, P.M. Abdala, D. Stoian, X. Huang, M.G. Willinger, A. Fedorov, C.R. Muller, J. Am. Chem. Soc. 141 (2019) 13497-13505
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (332) PDF downloads(44) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return