Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Tangming Mo, Liang Zeng, Zhenxiang Wang, Svyatoslav Kondrat, Guang Feng. Symmetrizing cathode-anode response to speed up charging of nanoporous supercapacitors. Green Energy&Environment, 2022, 7(1): 95-104. doi: 10.1016/j.gee.2021.05.001
Citation: Tangming Mo, Liang Zeng, Zhenxiang Wang, Svyatoslav Kondrat, Guang Feng. Symmetrizing cathode-anode response to speed up charging of nanoporous supercapacitors. Green Energy&Environment, 2022, 7(1): 95-104. doi: 10.1016/j.gee.2021.05.001

Symmetrizing cathode-anode response to speed up charging of nanoporous supercapacitors

doi: 10.1016/j.gee.2021.05.001
  • Asymmetric behaviors of capacitance and charging dynamics in the cathode and anode are general for nanoporous supercapacitors. Understanding this behavior is essential for the optimal design of supercapacitors. Herein, we perform constant-potential molecular dynamics simulations to reveal asymmetric features of porous supercapacitors and their effects on capacitance and charging dynamics. Our simulations show that, counterintuitively, charging dynamics can be fast in pores providing slow ion diffusion and vice versa. Unlike electrodes with singlesize pores, multi-pore electrodes show overcharging and accelerated co-ion desorption, which can be attributed to the subtle interplay between the dynamics and charging mechanisms. We find that capacitance and charging dynamics correlate with how the ions respond to an applied cell voltage in the cathode and anode. We demonstrate that symmetrizing this response can help boost power density, which may find practical applications in supercapacitor optimization.

     

  • • Capacitance and charging dynamics of supercapacitors correlate with ion response in the cathode and anode. • Symmetrizing ion response in the cathode and anode can boost the charging dynamics of supercapacitors. • Charging dynamics of narrow pores can be fast despite slow in-pore ion diffusion. • Over-charging occurs in electrodes with multiple pore sizes, which speeds up their charging dynamics.
  • loading
  • [1]
    J.R. Miller, P. Simon, Science 321(2008) 651-652.
    [2]
    Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Chem. Rev. 118(2018) 9233-9280.
    [3]
    G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41(2012) 797-828.
    [4]
    P. Simon, Y. Gogotsi, B. Dunn, Science 343(2014) 1210-1211.
    [5]
    A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Chem. Soc. Rev. 48(2019) 1272-1341.
    [6]
    P. Simon, Y. Gogotsi, Nat. Mater. 19(2020) 1151-1163.
    [7]
    H. Jiang, P.S. Lee, C.Z. Li, Energy Environ. Sci. 6(2013) 41-53.
    [8]
    Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Chem. Rev. 115(2015) 5159-5223.
    [9]
    M.H. Yap, K.L. Fow, G.Z. Chen, Green Energy Environ. 2(2017) 218-245.
    [10]
    H. Shao, Y.-C. Wu, Z. Lin, P.-L. Taberna, P. Simon, Chem. Soc. Rev. 49(2020) 3005-3039.
    [11]
    S. Arunachalam, B. Kirubasankar, D. Pan, H. Liu, C. Yan, Z. Guo, S. Angaiah, Green Energy Environ. 5(2020) 259-273.
    [12]
    J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Angew. Chem. Int. Ed. 47(2008) 3392-3395.
    [13]
    C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc. 130(2008) 2730-2731.
    [14]
    S. Vaquero, J. Palma, M. Anderson, R. Marcilla, Int. J. Electrochem. Sci. 8(2013) 10293-10307.
    [15]
    J. Vatamanu, M. Vatamanu, D. Bedrov, ACS Nano 9(2015) 5999-6017.
    [16]
    K.L. Van Aken, M. Beidaghi, Y. Gogotsi, Angew. Chem. Int. Ed. 54(2015) 4806-4809.
    [17]
    C.C. Rochester, S. Kondrat, G. Pruessner, A.A. Kornyshev, J. Phys. Chem. C 120(2016) 16042-16050.
    [18]
    E. Zhang, N. Fulik, G.P. Hao, H.Y. Zhang, K. Kaneko, L. Borchardt, E. Brunner, S. Kaskel, Angew. Chem. Int. Ed. 58(2019) 13060-13065.
    [19]
    L. Xing, J. Vatamanu, O. Borodin, D. Bedrov, J. Phys. Chem. Lett. 4(2013) 132-140.
    [20]
    W.Y. Tsai, P.L. Taberna, P. Simon, J. Am. Chem. Soc. 136(2014) 8722-8728.
    [21]
    J.M. Griffin, A.C. Forse, W.Y. Tsai, P.L. Taberna, P. Simon, C.P. Grey, Nat. Mater. 14(2015) 812-819.
    [22]
    A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, J. Am. Chem. Soc. 138(2016) 5731-5744.
    [23]
    Z. Bo, J.Y. Yang, H.L. Qi, J.H. Yan, K.F. Cen, Z.J. Han, Energy Storage Mater. 31(2020) 64-71.
    [24]
    H. Tao, C. Lian, H. Liu, Green Energy Environ. 5(2020) 303-321.
    [25]
    C. Péan, B. Rotenberg, P. Simon, M. Salanne, Electrochim. Acta 206(2016) 504-512.
    [26]
    A.C. Forse, J.M. Griffin, C. Merlet, J. Carretero-Gonzalez, A.R.O. Raji, N.M. Trease, C.P. Grey, Nat. Energy 2(2017) 16216.
    [27]
    Y. He, R. Qiao, J. Vatamanu, O. Borodin, D. Bedrov, J. Huang, B.G. Sumpter, J. Phys. Chem. Lett. 7(2016) 36-42.
    [28]
    C. Merlet, M. Salanne, B. Rotenberg, J. Phys. Chem. C 116(2012) 7687-7693.
    [29]
    W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, J. Am. Chem. Soc. 117(1995) 5179-5197.
    [30]
    S. Kondrat, P. Wu, R. Qiao, A.A. Kornyshev, Nat. Mater. 13(2014) 387-393.
    [31]
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theor. Comput. 4(2008) 435-447.
    [32]
    C. Merlet, C. Péan, B. Rotenberg, P.A. Madden, P. Simon, M. Salanne, J. Phys. Chem. Lett. 4(2013) 264-268.
    [33]
    J.Y. Yang, Z. Bo, H.C. Yang, H.L. Qi, J. Kong, J.H. Yan, K.F. Cen, ChemElectroChem 4(2017) 2486-2493.
    [34]
    J.I. Siepmann, M. Sprik, J. Chem. Phys. 102(1995) 511-524.
    [35]
    S.K. Reed, P.A. Madden, A. Papadopoulos, J. Chem. Phys. 128(2008) 124701.
    [36]
    C. Merlet, B. Rotenberg, P.A. Madden, P.L. Taberna, P. Simon, Y. Gogotsi, M. Salanne, Nat. Mater. 11(2012) 306-310.
    [37]
    J. Vatamanu, O. Borodin, G.D. Smith, J. Am. Chem. Soc. 132(2010) 14825-14833.
    [38]
    Y. Groda, M. Dudka, A.A. Kornyshev, G. Oshanin, S. Kondrat, J. Phys. Chem. C 125(2021) 4968-4976.
    [39]
    S. Kondrat, A.A. Kornyshev, Nanoscale Horiz 1(2016) 45-52.
    [40]
    T. Mo, S. Bi, Y. Zhang, V. Presser, X. Wang, Y. Gogotsi, G. Feng, ACS Nano 14(2020) 2395-2403.
    [41]
    R. Singh, J. Monk, F.R. Hung, J. Phys. Chem. C 115(2011) 16544-16554.
    [42]
    C. Wang, Y. Wang, Y. Lu, H. He, F. Huo, K. Dong, N. Wei, S. Zhang, Phys. Chem. Chem. Phys. 21(2019) 12767-12776.
    [43]
    C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev. 44(2015) 7484-7539.
    [44]
    R. De Levie, Electrochim. Acta 8(1963) 751-780.
    [45]
    C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele, P.L. Taberna, P. Simon, M. Salanne, J. Am. Chem. Soc. 137(2015) 12627-12632.
    [46]
    M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75(2007) 021503.
    [47]
    C. Zhan, C. Lian, Y. Zhang, M.W. Thompson, Y. Xie, J. Wu, P.R.C. Kent, P.T. Cummings, D.E. Jiang, D.J. Wesolowski, Adv. Sci. 4(2017) 1700059.
    [48]
    K. Breitsprecher, C. Holm, S. Kondrat, ACS Nano 12(2018) 9733-9741.
    [49]
    B.J. Morgan, P.A. Madden, Phys. Rev. Lett. 112(2014) 145901.
    [50]
    X. He, Y. Zhu, Y. Mo, Nat. Commun. 8(2017) 15893.
    [51]
    Y. Gao, A.M. Nolan, P. Du, Y. Wu, C. Yang, Q. Chen, Y. Mo, S.H. Bo, Chem. Rev. 120(2020) 5954-6008.
    [52]
    Z. Lin, E. Goikolea, A. Balducci, K. Naoi, P.L. Taberna, M. Salanne, G. Yushin, P. Simon, Mater. Today 21(2018) 419-436.
    [53]
    S. Kondrat, C.R. Perez, V. Presser, Y. Gogotsi, A.A. Kornyshev, Energy Environ. Sci. 5(2012) 6474-6479.
    [54]
    J. Jiang, D. Cao, D.E. Jiang, J. Wu, J. Phys. Chem. Lett. 5(2014) 2195-2200.
    [55]
    A.A. Lee, S. Kondrat, D. Vella, A. Goriely, Phys. Rev. Lett. 115(2015) 106101.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (183) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return