Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Miao He, Chaozhu Shu, Ruixing Zheng, Wei Xiang, Anjun Hu, Yu Yan, Zhiqun Ran, Minglu Li, Xiaojuan Wen, Ting Zeng, Jianping Long. Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries. Green Energy&Environment, 2023, 8(1): 318-330. doi: 10.1016/j.gee.2021.04.011
Citation: Miao He, Chaozhu Shu, Ruixing Zheng, Wei Xiang, Anjun Hu, Yu Yan, Zhiqun Ran, Minglu Li, Xiaojuan Wen, Ting Zeng, Jianping Long. Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries. Green Energy&Environment, 2023, 8(1): 318-330. doi: 10.1016/j.gee.2021.04.011

Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries

doi: 10.1016/j.gee.2021.04.011
  • Aqueous zinc-air battery (ZAB) has attractive features as the potential energy storage system such as high safety, low cost and good environmental compatibility. However, the issue of dendrite growth on zinc metal anodes has seriously hindered the development of ZAB. Herein, the N-doped carbon cloth (NC) prepared via magnetron sputtering is explored as the substrate to induce the uniform nucleation of zinc metal and suppress dendrite growth. Results show that the introduction of heteroatoms accelerates the migration and deposition kinetics of Zn2+ by boosting the desolvation process of Zn2+, eventually reducing the nucleation overpotential. Besides, theoretical calculation results confirm the zincophilicity of N-containing functional group (such as pyridine N and pyrrole N), which can guide the nucleation and growth of zinc uniformly on the electrode surface by both promoting the redistribution of Zn2+ in the vicinity of the surface and enhancing its interaction with zinc atoms. As a result, the half-cell assembled with magnetron sputtered carbon cloth achieves a high zinc stripping/plating coulombic efficiency of 98.8% and long-term stability of over 500 cycles at 0.2 mA cm-2. And the Coulombic efficiency reached about 99.5% at the 10th cycle and maintained for more than 210 cycles at a high current density of 5.0 mA cm-2. The assembled symmetrical battery can deliver 220 plating/stripping cycles with ultra-low voltage hysteresis of only 11 mV. In addition, the assembled zinc-air full battery with NC-Zn anode delivers a high special capacity of about 429 mAh gZn-1 and a long life of over 430 cycles. The effectiveness of surface functionalization in promoting the transfer and deposition kinetics of Zn2+ presented in this work shows enlightening significance in the development of metal anodes in aqueous electrolytes.

     

  • • The as-fabricated host successfully induces the even nucleation and suppress the dendrite growth of zinc metal. • The incorporated nitrogen species can promote the kinetics of zinc deposition by boosting the desolvation of zinc ions. • The introduced nitrogen species can reduce the migration energy barrier of zinc ions. • The pyrrole nitrogen sites in the carbon lattice are zincophilicity. • The NC-Zn anode achieves a high coulombic efficiency of 98.8% and long-term stability of over 500 cycles.
  • loading
  • [1]
    Z. Yang, J. Zhang, M. Kintnermeyer, X. Lu, D. Choi, J. Lemmon, J. Liu, Chem. Rev. 111 (2011) 3577-3613
    [2]
    A. Hu, W. Lv, T. Lei, W. Chen, J. Xiong, ACS Nano, 14 (2020) 3490-3499
    [3]
    A. Hu, C. Shu, C. Xu, R. Liang, J. Li, R. Zheng, M. Li, J. Long, J. Mater. Chem. A 7 (2019) 21605-21633
    [4]
    J. Qian, T. Wang, Z. Zhang, Y. Liu, J. Li, D. Gao, Nano Energy 74 (2020) 104948
    [5]
    D. Kundu, B. Adams, V. Duffort, S. Vajargah, L. Nazar, Nat. Energy 1 (2016) 16119
    [6]
    Z. Zhang, X. Liang, J. Li, J. Qian, Y. Liu, S. Yang, Y. Wang, D. Gao, D. Xue, ACS Appl. Mater. Interfaces 12 (2020) 21661-21669
    [7]
    J. Ran, T. Wang, J. Zhang, Y. Liu, C. Xu, S. Xi, D. Gao, Chem. Mater. 32 (2020) 3439-3446
    [8]
    S. Zhang, InfoMat 2 (2020) 942-949
    [9]
    A. Mainar, L. Colmenares, J. Blazquez, I. Urdampilleta, Int. J. Energ. Res. 42 (2018) 903-918
    [10]
    A. Mainar, O. Leonet, M. Bengoechea, I. Boyano, I. Meatza, A. Kvasha, A. Guerfi, J. Blazquez, Int. J. Energ. Res. 40 (2016) 1032-1049
    [11]
    P. Liu, J. Ran, B. Xia, S. Xi, J. Wang, Nanomicro Lett. 12 (2020) 165-176
    [12]
    J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Energ. Environ. Sci. 11 (2018) 3075-3095
    [13]
    M. Jackle, K. Helmbrecht, M. Smits, D. Stottmeister, A. Gros, Energ. Environ. Sci. 11 (2018) 3400-3407
    [14]
    J. Zhang, T. Wang, D. Xue, D. Gao, P. Xi, D. Gao, W. Huang, Energy Stor. Mater. 25 (2019) 202-209
    [15]
    J. Zhou, Y. Liu, S. Zhang, T. Zhou, Z. Guo, InfoMat 2 (2020) 437-465
    [16]
    W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao, X. Gu. H. Cheng, L. Mai. C. Hu, X. Wang, Nano Energy 62 (2019) 275-281
    [17]
    H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang, C. Li, Adv. Funct. Mater. 30 (2020) 1907684
    [18]
    J. Parker, C. Chervin, I. Pala, M. Machler, M. Burz, J. Long, D. Rolison, Science 356 (2017) 415-418
    [19]
    P. Yu, Y. Zeng, H. Zhang, M. Yu, Y. Tong, X. Lu, Small 15 (2019) 1804760
    [20]
    P. Zou, S. Chiang, J. Li, Y. Wang, X. Wang, D. Wu, A. Nairan, F. Kang, C. Yang, Energy Stor. Mater. 18 (2019) 155-164
    [21]
    F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. Dura, K. Xu, C. Wang, Nat. Mater. 17 (2018) 543-549
    [22]
    Y. Han, B. Liu, Z. Xiao, W. Zhang, X. Wang, G. Pan, Y. Xia, X. Xia, J. Tu, InfoMat 3 (2021) 155-174
    [23]
    Y. Yao, X. Zhang, B. Li, C. Yan, P. Chen, J. Huang, Q. Zhang, InfoMat 2 (2020) 379-388
    [24]
    J. Chazalviel, Phys. Rev. A 42 (1990) 7355-7367
    [25]
    C. Brissot, M. Rosso, J. Chazalviel, S. Lascaud, J. Power Sources 81 (1999) 925-929
    [26]
    M. Rosso, C. Brissot, A. Teyssot, M. Dolle, L. Sannier, J. Tarascon, R. Bouchet, S. Lascaud, Electrochim. Acta 51 (2006) 5334-5340
    [27]
    F. Sagane, K. Ikeda, K. Okita, H. Sano, H. Sakaebe, Y. Iriyama, J. Power Sources 233 (2013) 34-42
    [28]
    A. Milchev, M. Montenegro, J. Electroanal. Chem. 333 (1992) 93-102
    [29]
    B. U. Li, L. Kong, C. I. Zhao, Q. Jin, X. Chen, H. Peng, J. Qin, J. Chen H. Yuan, Q. Zhang, J. Q. Huang, InfoMat 1 (2019) 533-541
    [30]
    D. Chen, H. Tan, X. Rui, Q. Zhang, Y. Feng, H. Geng, C. Li, S. Huang, Y. Yu, InfoMat 1 (2019) 251-259
    [31]
    A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 17 (2017) 1132-1139
    [32]
    X. Chen, X. Chen, T. Hou, B. Li, X. Cheng, R. Zhang, Q. Zhang, Sci. Adv. 5 (2019) 6528
    [33]
    Y. Guo, P. Niu, Y. Liu, Y. Ouyang, D. Li, T. Zhai, H. Li, Y. Cui, Adv. Mater. 31 (2019) 1900342
    [34]
    W. Chen, Y. Hu, W. Lv, T. Lei, X. Wang, Z. Li, M. Zhang, J. Huang, X. Du, Y. Yan, W. He, C. Liu, M. Liao, W. Zhang, J. Xiong, C. Yan, Nat. Commun. 10 (2019) 4973
    [35]
    R. Yuksel, O. Buyukcakir, W. Seong, R. Ruoff, Adv. Energy Mater. 10 (2020) 1904215
    [36]
    Z. Zhou, Y. Zhang, P. Chen, Y. Wu, H. Yang, H. Ding, Y. Zhang, Z. Wang, X. Du, N. Liu, Chem. Eng. Sci. 194 (2019) 142-147
    [37]
    R. Zhang, X. Chen, X. Chen, X. Cheng, X. Zhang, Angew. Chem. Int. Ed. 56 (2017) 7764-7768
    [38]
    F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 5 (2014) 5261
    [39]
    S. You, M. Ma, W. Wang, D. Qi, X. Chen, J. Qu, N. Ren, Adv. Energy Mater. 7 (2017) 1601364
    [40]
    P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Nat. Chem. 8 (2016) 718-724
    [41]
    D. Seo, S. Kumar, K. Ostrikov, Carbon 49 (2011) 4331-4339
    [42]
    H. Bi, W. Zhao, S. Sun, H. Cui, T. Lin, F. Huang, X. Xie, M. Jiang, Carbon 61 (2013) 116-123
    [43]
    R. Zhan, X. Chen, X. Che, X. Chen, X. Zhang, C. Yan, Q. Zhan, Angew. Chem. Int. Ed. 56 (2017) 7764-7768
    [44]
    H. Bi, Z. Liu, F. Xu, Y. Tang, F. Huang, J. Mater. Chem. A 4 (2016) 11762-11767
    [45]
    K. Yan, Z. Lu, H. W. Lee, F. Xiong, P. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nature Energy 1 (2016) 16010
    [46]
    L. Liu, Y. Yin, J. Li, S. Wang, Y. Guo, L. Wan, Adv. Mater. 30 (2018) 1706216
    [47]
    P. Simon, Y. Gogotsi, B. Dunn, Science 343 (2014) 1210-1211
    [48]
    G. Wilcox, P. Mitchell, J. Power Sources 28 (1989) 345-359
    [49]
    W. John, A. Damjanovic, J. Electrochem. Soc. 119 (1972) 1649
    [50]
    R. Wang, D. Kirk, G. Zhang, J. Electrochem. Soc. 153 (2006) C357
    [51]
    C. Lan, C. Lee, T. Chin, Electrochim. Acta 52 (2007) 5407-5416
    [52]
    J. Ballesteros, P. Diaz-Arista, Y. Meas, R. Ortega, G. Trejo, Electrochim. Acta 52 (2007) 3686-3696
    [53]
    J. Lopez, A. Pei, J. Oh, G. Wang, Y. Cui, Z. Bao, J. Am. Chem. Soc. 40 (2018) 11735-11744
    [54]
    F. Zhou, Z. Li, Y. Lu, B. Shen, S. Yu, Nat. Comm. 10 (2019) 2482
    [55]
    S. Guo, S. Liang, B. Zhang, G. Fang, J. Zhou, ACS Nano 13 (2019) 13456-13464
    [56]
    T. Hou, W. Xu, X. Chen, H. Peng, J. Huang, Q. Zhang, Angew. Chem. Int. Ed. 129 (2017) 8290-8294
    [57]
    T. Hou, X. Chen, H. Peng, J. Huang, B. Li, Small 22 (2016) 3283-3291
    [58]
    L. Ma, S. Chen, X. Li, A. Chen, B. Dong, C. Zhi, Angew. Chem. Int. Ed. 132 (2020) 24044
    [59]
    Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan, D. Wang, Z. Huang, X. Li, J. Fan, C. Zhi, Adv. Mater. 31 (2019) 1903778
    [60]
    A. Hu, M. Zhou, T. Lei, Y. Hu, X. Du, C. Gong, C. Shu, J. Long, J. Zhu, W. Chen, X. Wang, J. Xiong, Adv. Energy Mater. 10 (2020) 2002180
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (184) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return