Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Shichao Wang, Jixing Bai, Mugaanire Tendo Innocent, Qianqian Wang, Hengxue Xiang, Jianguo Tang, Meifang Zhu. Lignin-based carbon fibers: Formation, modification and potential applications. Green Energy&Environment, 2022, 7(4): 578-605. doi: 10.1016/j.gee.2021.04.006
Citation: Shichao Wang, Jixing Bai, Mugaanire Tendo Innocent, Qianqian Wang, Hengxue Xiang, Jianguo Tang, Meifang Zhu. Lignin-based carbon fibers: Formation, modification and potential applications. Green Energy&Environment, 2022, 7(4): 578-605. doi: 10.1016/j.gee.2021.04.006

Lignin-based carbon fibers: Formation, modification and potential applications

doi: 10.1016/j.gee.2021.04.006
  • As an aromatic polymer in nature, lignin has recently attracted gross attention because of its advantages of high carbon content, low cost and bio-renewability. However, most lignin is directly burnt for power generation to satisfy the energy demand of the pulp mills. As a result, only a handful of isolated lignin is used as a raw material. Thus, increasing value addition on lignin to expand its scope of applications is currently a challenge demanding immediate attention. Many efforts have been made in the valorization of lignin, including the preparation of precursors for carbon fibers. However, its complex structure and diversity significantly restrict the spinnability of lignin. In this review, we provide elaborate knowledge on the preparation of lignin-based carbon fibers ranging from the relationships among chemical structures, formation conditions and properties of fibers, to their potential applications. Specifically, control procedures for different spinning methods of lignin, including melt spinning, solution spinning and electrospinning, together with stabilization and carbonization are deeply discussed to provide an overall understanding towards the formation of lignin-based carbon fibers. We also offer perspectives on the challenges and new directions for future development of lignin-based carbon fibers.

     

  • • Comprehensive overview on the formation of lignin fibers and nanofibers. • Relationships among chemical structure, processing condition and fiber property. • Perspectives and challenges for future development of lignin-based carbon fibers.
  • loading
  • [1]
    A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen, M.F. Davis, B.H. Davison, R.A. Dixon, P. Gilna, M. Keller, P. Langan, A.K. Naskar, J.N. Saddler, T.J. Tschaplinski, G.A. Tuskan, C.E. Wyman, Science 344 (2014) 709
    [2]
    E. Svinterikos, I. Zuburtikudis, M. Al-Marzouqi, ACS Sustain. Chem. Eng. 8 (2020) 13868-13893
    [3]
    T. Saito, R.H. Brown, M.A. Hunt, D.L. Pickel, J.M. Pickel, J.M. Messman, F.S. Baker, M. Keller, A.K. Naskar, Green Chem. 14 (2012) 3295-3303
    [4]
    S. Chatterjee, T. Saito, Chemsuschem 8 (2015) 3941-3958
    [5]
    D. Gan, T. Shuai, X. Wang, Z. Huang, F. Ren, L. Fang, K. Wang, C. Xie, X. Lu, Nano-Micro Lett. 12 (2020) 169
    [6]
    C. Crestini, F. Melone, M. Sette, R. Saladino, Biomacromolecules 12 (2011) 3928-3935
    [7]
    P. Figueiredo, K. Lintinen, J.T. Hirvonen, M.A. Kostiainen, H.A. Santos, Prog. Mater Sci. 93 (2018) 233-269
    [8]
    F.S. Chakar, A.J. Ragauskas, Ind. Crop. Prod. 20 (2004) 131-141
    [9]
    J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, Chem. Rev. 110 (2010) 3552-3599
    [10]
    G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106 (2006) 4044-4098
    [11]
    H.H. Nimz, D. Robert, O. Faix, M. Nemr, Holzforschung 35 (1981) 16
    [12]
    S. Sen, S. Patil, D.S. Argyropoulos, Green Chem. 17 (2015) 4862-4887
    [13]
    S. Wang, M.T. Innocent, Q. Wang, H. Xiang, J. Tang, M. Zhu, Int. J. Biol. Macromol. 151 (2020) 730-739
    [14]
    M. Balakshin, E.A. Capanema, X. Zhu, I. Sulaeva, A. Potthast, T. Rosenau, O.J. Rojas, Green Chem. 22 (2020) 8046-8046
    [15]
    Windeisen, E., Reference Module in Materials Science and Materials Engineering||Lignin as Building Unit for Polymers, Elsevier, 2016
    [16]
    S. Laurichesse, L. Averous, Prog. Polym. Sci. 39 (2014) 1266-1290
    [17]
    R. Zhang, Q. Du, L. Wang, Z. Zheng, L. Guo, X.Y. Zhang, X.L. Yang, H.B. Yu, Green Chem. 21 (2019) 4981-4987
    [18]
    H.M. Wang, B. Wang, J.L. Wen, T.Q. Yuan, R.C. Sun, ACS Sustain. Chem. Eng. 5 (2017) 11618-11627
    [19]
    W.O.S. Doherty, P. Mousavioun, C.M. Fellows, Ind. Crop. Prod. 33 (2011) 259-276
    [20]
    A. Vishtal, A. Kraslawski, Bioresources 6 (2011) 3547-3568
    [21]
    T. Saito, J.H. Perkins, F. Vautard, H.M. Meyer, J.M. Messman, B. Tolnai, A.K. Naskar, Chemsuschem 7 (2014) 221-228
    [22]
    H. Zhang, Y. Bai, B. Yu, X. Liu, F. Chen, Green Chem. 19 (2017) 5152-5162
    [23]
    S. Kubo, Y. Uraki, Y. Sano, Carbon 36 (1998) 1119-1124
    [24]
    M.V. Galkin, J.S.M. Samec, Chemsuschem 9 (2016) 1544-1558
    [25]
    M.N. Collins, M. Nechifor, F. Tanasa, M. Zanoaga, A. Mcloughlin, M.A. Strozyk, M. Culebras, C.-A. Teaca, Int. J. Biol. Macromol. 131 (2019) 828-849
    [26]
    B.M. Upton, A.M. Kasko, Chem. Rev. 116 (2016) 2275-2306
    [27]
    B. Ding, Adv. Fiber Mater. 2 (2020) 45-45
    [28]
    A. Ziabicki, Fundamentals of Fibre Formation:The Science of Fibre Spinning and Drawing. Wiley:Hoboken, 1976
    [29]
    D.A. Baker, N.C. Gallego, F.S. Baker, J. Appl. Polym. Sci. 124 (2012) 227-234
    [30]
    S. Xinyuan, Principles of polymer processing (In Chinese). China Textile & Apparel Press, 2014
    [31]
    D.A. Baker, T.G. Rials, J. Appl. Polym. Sci. 130 (2013) 713-728
    [32]
    S. Wang, Z. Zhou, H. Xiang, W. Chen, E. Yin, T. Chang, M. Zhu, Compos. Sci. Technol. 128 (2016) 116-122
    [33]
    S. Chatterjee, E.B. Jones, A.C. Clingenpeel, A.M. Mckenna, O. Rios, N.W. Mcnutt, D.J. Keffer, A. Johs, ACS Sustain. Chem. Eng. 2 (2014) 2002-2010
    [34]
    H. Sadeghifar, C. Cui, D.S. Argyropoulos, Ind. Eng. Chem. Res. 51 (2012) 16713-16720
    [35]
    Y. Uraki, S. Kubo, N. Nigo, Y. Sano, T. Sasaya, Holzforschung 49 (1995) 343-350
    [36]
    M. Thunga, K. Chen, D. Grewell, M.R. Kessler, Carbon 68 (2014) 159-166
    [37]
    L.M. Steudle, E. Frank, A. Ota, U. Hageroth, S. Henzler, W. Schuler, R. Neupert, M.R. Buchmeiser, Macromol. Mater. Eng. 302 (2017)
    [38]
    S.L. Hilburg, A.N. Elder, H. Chung, R.L. Ferebee, M.R. Bockstaller, N.R. Washburn, Polymer 55 (2014) 995-1003
    [39]
    J.F. Kadla, S. Kubo, R.A. Venditti, R.D. Gilbert, A.L. Compere, W. Griffith, Carbon 40 (2002) 2913-2920
    [40]
    S. Kubo, J.F. Kadla, Macromolecules 37 (2004) 6904-6911
    [41]
    M. Culebras, A. Beaucamp, Y. Wang, M.M. Clauss, E. Frank, M.N. Collins, ACS Sustain. Chem. Eng. 6 (2018) 8816-8825
    [42]
    W.D. Qu, X.L. Bai, J. Appl. Polym. Sci. 137 (2020) 48843
    [43]
    S. Kubo, J.F. Kadla, J. Polym. Environ. 13 (2005) 97-105
    [44]
    S. Wang, Y. Li, H. Xiang, Z. Zhou, T. Chang, M. Zhu, Compos. Sci. Technol. 119 (2015) 20-25
    [45]
    S. Kubo, J.F. Kadla, J. Appl. Polym. Sci. 98 (2005) 1437-1444
    [46]
    M. Culebras, A. Beaucamp, Y. Wang, M.M. Clauss, E. Frank, M.N. Collins, ACS Sustain. Chem. Eng. 6 (2018) 8816-8825
    [47]
    O. Hosseinaei, D.P. Harper, J.J. Bozell, T.G. Rials, Int. J. Mol. Sci. 18 (2017) 1410
    [48]
    S. Kubo, T. Yoshida, J.F. Kadla, J. Wood Chem. Technol. 27 (2007) 257-271
    [49]
    F. Chen, H. Dai, X. Dong, J. Yang, M. Zhong, Polym. Compos. 32 (2011) 1019-1025
    [50]
    A.V. Maldhure, J.D. Ekhe, E. Deenadayalan, J. Appl. Polym. Sci. 125 (2012) 1701-1712
    [51]
    P. Goulis, G. Konstantopoulos, I.A. Kartsonakis, K. Mpalias, S. Anagnou, D. Dragatogiannis, C. Charitidis, C-J. Carbon Res. 3 (2017) 35
    [52]
    S. Kubo, J.F. Kadla, Biomacromolecules 4 (2003) 561-567
    [53]
    E. Corradini, E.a.G. Pineda, A.a.W. Hechenleitner, Polym. Degrad. Stab. 66 (1999) 199-208
    [54]
    O. Sevastyanova, W. Qin, J.F. Kadla, J. Appl. Polym. Sci. 117 (2010) 2877-2881
    [55]
    W. Qin, J.F. Kadla, Ind. Eng. Chem. Res. 50 (2011) 12548-12555
    [56]
    L. Salmen, E. Bergnor, A.M. Olsson, M. Akerstrom, A. Uhlin, Bioresources 10 (2015) 7544-7554
    [57]
    A. Awal, M. Sain, J. Appl. Polym. Sci. 129 (2013) 2765-2771
    [58]
    M.S. Kim, D.H. Lee, C.H. Kim, Y.J. Lee, K.S. Yang, Carbon 85 (2015)
    [59]
    M. Zhang, A.A. Ogale, J. Appl. Polym. Sci. 133 (2016) 10
    [60]
    M. Al Aiti, A. Das, M. Kanerva, M. Jarventausta, P. Johansson, C. Scheffler, M. Goebel, D. Jehnichen, H. Bruenig, L. Wulff, S. Boye, K. Arnhold, J. Kuusipalo, G. Heinrich, Materials 13 (2020) 3687
    [61]
    R. Protz, A. Lehmann, J. Ganster, H.P. Fink, Carbohydr. Polym. 251 (2021) 117027-117027
    [62]
    J. Jin, J.H. Ding, A. Klett, M.C. Thies, A.A. Ogale, ACS Sustain. Chem. Eng. 6 (2018) 14135-14142
    [63]
    X. Jiang, Q. Ouyang, D. Liu, J. Huang, H. Ma, Y. Chen, X. Wang, W. Sun, Holzforschung 72 (2018) 727-734
    [64]
    J. Jin, A.A. Ogale, J. Appl. Polym. Sci. 135 (2018)
    [65]
    M. Zhang, A.A. Ogale, Carbon 69 (2014) 626-629
    [66]
    H.C. Liu, A.T. Chien, B.A. Newcomb, Y. Liu, S. Kumar, ACS Sustain. Chem. Eng. 3 (2015) 1943-1954
    [67]
    S. Vincent, R. Prado, O. Kuzmina, K. Potter, J. Bhardwaj, N.D. Wanasekara, R.L. Harniman, A. Koutsomitopoulou, S.J. Eichhorn, T. Welton, S.S. Rahatekar, ACS Sustain. Chem. Eng. 6 (2018) 5903-5910
    [68]
    S.P. Maradur, C.H. Kim, S.Y. Kim, B.H. Kim, W.C. Kim, K.S. Yang, Synth. Met. 162 (2012) 453-459
    [69]
    K.Q. Xia, Q. Ouyang, Y.S. Chen, X.F. Wang, X. Qian, L. Wang, ACS Sustain. Chem. Eng. 4 (2016) 159-168
    [70]
    M. Trogen, N.D. Le, D. Sawada, C. Guizani, T.V. Lourencon, L. Pitkanen, H. Sixta, R. Shah, H. O'neill, M. Balakshin, N. Byrne, M. Hummel, Carbohydr. Polym. 252 (2021) 117133-117133
    [71]
    M. Follmer, S. Jestin, W. Neri, V.S. Vo, A. Derre, C. Mercader, P. Poulin, Adv. Sustain. Syst. 3 (2019) 1900082
    [72]
    A. Bengtsson, J. Bengtsson, C. Olsson, M. Sedin, K. Jedvert, H. Theliander, E. Sjoholm, Holzforschung 72 (2018) 1007-1016
    [73]
    A. Bengtsson, P. Hecht, J. Sommertune, M. Ek, M. Sedin, E. Sjoholm, ACS Sustain. Chem. Eng. 8 (2020) 6826-6833
    [74]
    F. Torres-Canas, A. Bentaleb, M. Follmer, J. Roman, W. Neri, I. Ly, A. Derre, P. Poulin, Carbon 163 (2020) 120-127
    [75]
    C.H. Lu, C. Blackwell, Q.Y. Ren, E. Ford, ACS Sustain. Chem. Eng. 5 (2017) 2949-2959
    [76]
    L. Wang, M. Ago, M. Borghei, A. Ishaq, A.C. Papageorgiou, M. Lundahl, O.J. Rojas, ACS Sustain. Chem. Eng. 7 (2019) 6013-6022
    [77]
    J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 119 (2019) 5298-5415
    [78]
    R. Finn, Notices Am. Math. Soc. 46 (1999)
    [79]
    T. Young, Philos. Trans. Roy. Soc. London 95 (1805) 65-87
    [80]
    G. Taylor, Proc. Roy. Soc. London 280 (1964) 383-397
    [81]
    G. Taylor, Proc. Roy. Soc. London 313 (1969) 453-475
    [82]
    D. Duft, T. Achtzehn, R. Muller, B.A. Huber, T. Leisner, Nature 421 (2003) 128-128
    [83]
    J.H. He, Y. Wu, W.W. Zuo, Polymer 46 (2005) 12637-12640
    [84]
    A. M. Calvo, Phys. Rev. Lett. 79 (1997) 4193
    [85]
    D.H. Reneker, A.L. Yarin, Polymer 49 (2008) 2387-2425
    [86]
    D. Reneker., F. Hao, Polymeric nanofibers. American Chemical Society:Washington, DC, USA, 2006
    [87]
    S.V. Fridrikh, J.H. Yu, M.P. Brenner, G.C. Rutledge, Phys. Rev. Lett. 90 (2003) 144502
    [88]
    S.A. Theron, E. Zussman, A.L. Yarin, Polymer 45 (2004) 2017-2030
    [89]
    S.L. Shenoy, W.D. Bates, H.L. Frisch, G.E. Wnek, Polymer 46 (2005) 3372-3384
    [90]
    W.J. Youe, S.M. Lee, S.S. Lee, S.H. Lee, Y.S. Kim, Int. J. Biol. Macromol. 82 (2016) 497-504
    [91]
    I. Dallmeyer, F. Ko, J.F. Kadla, Ind. Eng. Chem. Res. 53 (2014) 2697-2705
    [92]
    N.A. Nordin, N. Abdul Rahman, A.H. Abdullah, Molecules 25 (2020) 3081
    [93]
    S.D. Mustafov, A.K. Mohanty, M. Misra, M.O. Seydibeyoglu, Carbon 147 (2019) 262-275
    [94]
    H. Nie, A. He, J. Zheng, S. Xu, J. Li, C.C. Han, Biomacromolecules 9 (2008) 1362-1365
    [95]
    T. Worarutariyachai, S. Chuangchote, Bioresources 15 (2020) 2412-2427
    [96]
    F.J. Garcia-Mateos, R. Berenguer, M.J. Valero-Romero, J. Rodriguez-Mirasol, T. Cordero, J. Mat. Chem. A 6 (2018) 1219-1233
    [97]
    G. Taylor, Proc. Roy. Soc. London, Ser. A 280 (1964) 383-397
    [98]
    X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu, Polymer 43 (2002) 4403-4412
    [99]
    F.J. Garcia-Mateos, R. Ruiz-Rosas, J.M. Rosas, J. Rodriguez-Mirasol, T. Cordero, Front. Mater. 6 (2019) 114
    [100]
    J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C.B. Tan, Polymer 42 (2001) 261-272
    [101]
    R. Ding, H.C. Wu, M. Thunga, N. Bowler, M.R. Kessler, Carbon 100 (2016) 126-136
    [102]
    J.Y. Wei, S.Y. Geng, O. Pitkanen, T. Jarvinen, K. Kordas, K. Oksman, ACS Appl. Energ. Mater. 3 (2020) 3530-3540
    [103]
    C. Ma, Z. Li, J. Li, Q. Fan, L. Wu, J. Shi, Y. Song, Appl. Surf. Sci. 456 (2018) 568-576
    [104]
    M. Culebras, H. Geaney, A. Beaucamp, P. Upadhyaya, E. Dalton, K.M. Ryan, M.N. Collins, Chemsuschem 12 (2019) 4516-4521
    [105]
    M. Lallave, J. Bedia, R. Ruiz-Rosas, J. Rodriguez-Mirasol, T. Cordero, J.C. Otero, M. Marquez, A. Barrero, I.G. Loscertales, Adv. Mater. 19 (2007) 4292
    [106]
    D. Han, A.J. Steckl, Chempluschem 84 (2019) 1453-1497
    [107]
    H.C. Liu, J. Luo, H. Chang, A.a.B. Davijani, P.H. Wang, S. Kumar, Carbon 149 (2019) 165-172
    [108]
    X. Xu, J. Zhou, L. Jiang, G. Lubineau, S.A. Payne, D. Gutschmidt, Carbon 80 (2014) 91-102
    [109]
    X. Ma, P. Kolla, Y. Zhao, A.L. Smirnova, H. Fong, J. Power Sources 325 (2016) 541-548
    [110]
    X. Ma, A.L. Smirnova, H. Fong, Mater. Sci. Eng. B-Adv. 241 (2019) 100-104
    [111]
    M. Song, W. Zhang, Y. Chen, J. Luo, J.C. Crittenden, Front. Chem. Sci. Eng. 11 (2017) 328-337
    [112]
    Z. Dai, P. Ren, Q. Cao, X. Gao, W. He, Y. Xiao, Y. Jin, F. Ren, J. Polym. Res. 27 (2020)
    [113]
    C. Lai, P. Kolla, Y. Zhao, H. Fong, A.L. Smirnova, Electrochim. Acta 130 (2014) 431-438
    [114]
    S.I. Yun, S.H. Kim, D.W. Kim, Y.A. Kim, B.H. Kim, Carbon 149 (2019) 637-645
    [115]
    C. Ma, L. Wu, M. Dirican, H. Cheng, J. Li, Y. Song, J. Shi, X. Zhang, J. colloid interf. sci. 586 (2021) 412-422
    [116]
    S. Hu, S. Zhang, N. Pan, Y.L. Hsieh, J. Power Sources 270 (2014) 106-112
    [117]
    A.A. Ogale, M. Zhang, J. Jin, J. Appl. Polym. Sci. 133 (2016) 10
    [118]
    J.L. Braun, K.M. Holtman, J.F. Kadla, Carbon 43 (2005) 385-394
    [119]
    Y. Li, D. Cui, Y. Tong, L. Xu, Int. J. Biol. Macromol. 62 (2013) 663-669
    [120]
    G. Hu, X. Zhang, X. Liu, J. Yu, B. Ding, Adv. Fiber Mater. 2 (2020) 45
    [121]
    M.J. Cho, F.K. Ko, S. Renneckar, ACS Omega 4 (2019) 5345-5355
    [122]
    Z. Yue, A. Vakili, O. Hosseinaei, D.P. Harper, J. Appl. Polym. Sci. 134 (2017) 45507
    [123]
    M. Zhang, J. Jin, A.A. Ogale, Fibers 3 (2015) 184-196
    [124]
    A. Bengtsson, J. Bengtsson, M. Sedin, E. Sjoholm, ACS Sustain. Chem. Eng. 7 (2019) 8440-8448
    [125]
    M. Cho, M. Karaaslan, S. Chowdhury, F. Ko, S. Renneckar, ACS Sustain. Chem. Eng. 6 (2018) 6434-6444
    [126]
    W. Hoffman, W. Hurley, P. Liu, T. Owens, J. Mater. Res. 6 (1991) 1685-1694
    [127]
    D. J. Johnson, I. Tomizuka, Plast. Polym. Conf. Suppl. 6 (1974) 20-24
    [128]
    E. Frank, L.M. Steudle, D. Ingildeev, J.M. Spoerl, M.R. Buchmeiser, Angew. Chem. Int. Edit. 53 (2014) 5262-5298
    [129]
    D.J. Johnson, I. Tomizuka, O. Watanabe, Carbon 13 (1975) 321-325
    [130]
    J. Rodriguezmirasol, T. Cordero, J.J. Rodriguez, Carbon 34 (1996) 43-52
    [131]
    N.C.G. F. S. Baker, D. A. Baker, In SAMPE Conf. Proc., 2010; pp 1-16
    [132]
    H. Kleinhans, L. Salmen, J. Appl. Polym. Sci. 133 (2016) 43965
    [133]
    I. Norberg. Carbon Fibers from Kraft Lignin. KTH Royal Institute of Technology, 2012
    [134]
    J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135 (2013) 1167-1176
    [135]
    E. Frackowiak, F. Beguin, Carbon 39 (2001) 937-950
    [136]
    L. Liu, Z. Niu, J. Chen, Chem. Soc. Rev. 45 (2016) 4340-4363
    [137]
    X.Y. You, J.L. Duan, K. Koda, T. Yamada, Y. Uraki, Holzforschung 70 (2016) 661-671
    [138]
    Q. Wang, W. Ma, E. Yin, S. Yu, S. Wang, H. Xiang, D. Li, M. Zhu, ACS Appl. Energ. Mater. 3 (2020) 9360-9368
    [139]
    P. Schlee, S. Herou, R. Jervis, P.R. Shearing, D.J. Brett, D. Baker, O. Hosseinaei, P. Tomani, M.M. Murshed, Y. Li, Chem. Sci. 10 (2019) 2980-2988
    [140]
    S. Wang, M.T. Innocent, J. Chen, Q. Wang, W. Ma, J. Tang, Int. J. Biol. Macromol. 157 (2020) 706-714
    [141]
    R.a.P. Jayawickramage, K.J. Balkus, Jr., J.P. Ferraris, Nanotechnology 30 (2019) 355402
    [142]
    C.L. Lai, Z.P. Zhou, L.F. Zhang, X.X. Wang, Q.X. Zhou, Y. Zhao, Y.C. Wang, X.F. Wu, Z.T. Zhu, H. Fong, J. Power Sources 247 (2014) 134-141
    [143]
    Q. Cao, Y. Zhang, J. Chen, M. Zhu, C. Yang, H. Guo, Y. Song, Y. Li, J. Zhou, Ind. Crop. Prod. 148 (2020) 112181
    [144]
    W.-J. Youe, S.J. Kim, S.M. Lee, S.J. Chun, J. Kang, Y.S. Kim, Int. J. Biol. Macromol. 112 (2018) 943-950
    [145]
    L.P. Wang, Aorigele, Y.X. Sun, J. Wood Chem. Technol. 37 (2017) 423-432
    [146]
    D. Lei, X.D. Li, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, Polymer 132 (2017) 31-40
    [147]
    H. Tamon, M. Okazaki, Carbon 34 (1996) 741-746
    [148]
    C.A. Toles, W.E. Marshall, M.M. Johns, Carbon 37 (1999) 1207-1214
    [149]
    J.Q. Yang, Y.X. Wang, J.L. Luo, L.Y. Chen, ACS Omega 3 (2018) 4647-4656
    [150]
    W. Zhang, P. Yang, M. Luo, X. Wang, T. Zhang, W.M. Chen, X.Y. Zhou, Int. J. Biol. Macromol. 143 (2020) 434-442
    [151]
    W. Li, M. Li, K.R. Adair, X. Sun, Y. Yu, J. Mater. Chem. A 5 (2017) 13882-13906
    [152]
    B. Zhang, F. Kang, J.M. Tarascon, J.K. Kim, Prog. Mater. Sci. 76 (2015) 319-380
    [153]
    W.E. Tenhaeff, O. Rios, K. More, M.A. Mcguire, Adv. Funct. Mater. 24 (2014) 86-94
    [154]
    S.-X. Wang, L. Yang, L.P. Stubbs, X. Li, C. He, ACS Appl. Mater. Interfaces 5 (2013) 12275-12282
    [155]
    S. Liu, M.G. Ma, Ionics 26 (2020) 4651-4660
    [156]
    Z.Q. Shi, G.Q. Jin, J. Wang, J. Zhang, J. Electroanal. Chem. 795 (2017) 26-31
    [157]
    Z.Z. Chang, B.J. Yu, C.Y. Wang, Electrochim. Acta 176 (2015) 1352-1357
    [158]
    M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater. 23 (2013) 947-958
    [159]
    J. Jin, S.J. Yu, Z.Q. Shi, C.Y. Wang, C.B. Chong, J. Power Sources 272 (2014) 800-807
    [160]
    K. Peuvot, O. Hosseinaei, P. Tomani, D. Zenkert, G. Lindbergh, J. Electrochem. Soc. 166 (2019) A1984-A1990
    [161]
    H. Jia, N. Sun, M. Dirican, Y. Li, C. Chen, P. Zhu, C. Yan, J. Zang, J. Guo, J. Tao, J. Wang, F. Tang, X. Zhang, ACS Appl. Mater. Inter. 10 (2018) 44368-44375
    [162]
    S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 130 (2008) 12787-12793
    [163]
    S. Hu, F. Jiang, Y.L. Hsieh, ACS Sustain. Chem. Eng. 3 (2015) 2566-2574
    [164]
    Y. Wei, M. Song, L. Yu, X. Tang, Catalysts 7 (2017) 180
    [165]
    F.J. Garcia-Mateos, T. Cordero-Lanzac, R. Berenguer, E. Morallon, D. Cazorla-Amoros, J. Rodriguez-Mirasol, T. Cordero, Appl. Catal. B-Environ. 211 (2017) 18-30
    [166]
    Y. Sun, J.B. Mwandeje, L.M. Wangatia, F. Zabihi, J. Nedeljkovic, S. Yang, Adv. Fiber Mater. 2 (2020) 118-122
    [167]
    M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, Carbon 43 (2005) 1758-1767
    [168]
    D. Das, V. Gaur, N. Verma, Carbon 42 (2004) 2949-2962
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (430) PDF downloads(45) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return